Способ экстракции железа из водных растворов относится к области извлечения веществ органическими экстрагентами из водных растворов и может быть использован в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.
Известен способ получения железа восстановлением железных руд до металла [Рипан Р., Четяну И. Неорганическая химия, ч.2. - М.: Мир, 1972, с.485].
Недостатком способа является большой расход энергии и образование экологически опасных выбросов в атмосферу.
Наиболее близким техническим решением является способ экстракции ионов железа из солянокислых водных растворов трибутилфосфатом (ТБФ) при переработке природного и техногенного сырья [И.Д. Резник, Г.П. Ермаков, Я.М. Шнеерсон. Никель, ч.3. - М.: ООО «Наука и технологии», 2004. 608 с. Материалы VII Международной конференции «Устойчивое развитие горных территорий в условиях глобальных изменений», Владикавказ. 2010. С.45].
Недостатком способа является загрязнение конечных продуктов фосфором вследствие растворимости ТБФ в солянокислых растворах. Кроме того, экстрагент подвергается гидролизу, деструкции и разрушению с ухудшением экстракционных свойств.
Задачей изобретения является использование экономичного и эффективного способа для извлечения железа из водных растворов.
Технический результат, который может быть получен при использовании изобретения, заключается в экономичности и эффективности извлечения железа из водных растворов.
Этот технический результат достигается тем, что в известном способе экстракции железа из водного раствора, включающем контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз, экстракцию осуществляют из водного раствора растительными маслами при отношении водной (В) к органической (О) фазе В:O≥3 для Fe (III) и В:O=3-6 для Fe (II) при pH 2-3 для Fe (III) и 9-11 для Fe (III) и Fe (II) и времени экстракции 1-3 мин для Fe (III) и не более 60 мин для Fe (II).
Сущность способа поясняется данными фиг.1-10, в которых указаны концентрация железа в исходных растворах, время экстракции при заданной величине pH, концентрация железа и величина pH в осветленной водной фазе, коэффициент распределения D, рассчитываемый как отношение равновесных концентраций железа в органической и водной фазах, извлечением ε, % масс. от исходного, коэффициент разделения β=DFe(III)/DFe(II).
Перемешивание и поддержание заданного значения pH осуществляли до тех пор, пока в дальнейшем кислотно-основные характеристики системы изменялись незначительно. Однако для большей гарантии достижения равновесия контакт органической и водной фаз осуществляли не менее суток. По достижении равновесия между органической (О) и осветленной водной фазами (В) органическую фазу отделяли от водной, в последней определяли величину pH и остаточную концентрацию железа. Для поддержания заданного значения pH раствора в процессе экстракции в качестве нейтрализаторов использовали растворы щелочи NaOH и кислоты H2SO4.
Используя значения концентраций железа в водном растворе - исходном и после экстракции, рассчитывали коэффициент распределения железа D между органической и водной фазами.
Для исследования использовали кристаллогидраты солей FeCl3·6H2O и FeSO4·2H2O.
Примеры практического применения
Пример 1 (фиг.1)
На фиг.1 дана зависимость остаточной концентрации ионов Fe (III) от величины pH раствора. С0=1,26 г/дм3; O:В=1:3, время - сутки. Экстракция осуществляется при рН=2-3 и 9-11. При pH≤1 ион железа не экстрагируется, а при pH>11 образуются осадки черного цвета. В интервале рН=4-8 образуются осадки бурого цвета. Можно предположить, что вблизи рН гидрато-образования Fe (III) экстракция осуществляется за счет ионной связи между анионом олеиновой кислоты и катионом Fe (III), а в интервале pH 9-11 образуется комплекс Fe (III) с составляющими экстрагента и ионами ОН-, сольватирующийся в органическую фазу. Лучшие результаты получены при рН 10, в течение суток экстракции остаточная концентрация равна С=0,1025 г/дм3, D=33,88. Структура масляной фазы гелеобразная, цвет бурый. В этих же условиях Fe (II) экстрагируется только при pH 10, из раствора С0=1,28 г/дм3 в течение 1 часа экстракции остаточная концентрация Fe (II) равна С=0,094 г/дм3; D=34,46. В интервале рН=4-9 образуются осадки бурого цвета. Вероятно, экстракция Fe (II) связана с окислением иона Fe (II) до Fe (III) и экстракцией последнего масляной фазой. Об этом свидетельствуют также близкие значения коэффициентов распределения D как иона Fe (II), так и иона Fe (III).
Пример 2 (фиг.2, 3)
На фиг.2 дана зависимость коэффициента распределения D от отношения водной фазы (В) к органической (О) В:O из растворов солей Fe (III) при pH 10. Экстракция ионов Fe (III) осуществляется при В:O≥3 практически сразу, остаточная концентрация примерно одинакова и равна С=0,095 г/дм3. При экстракции ионов Fe (III) образуется на дне стакана налет бурого цвета.
На фиг.3 дана зависимость коэффициента распределения D ионов Fe (II) от отношения В:O. Экстракция ионов Fe (II) осуществляется в пределах В:O=3-6. Для отношения В:O=3 и 4 С0=1, 56 и 1,71 г/дм3 соответственно, а для В:O=5 и 6 С0=1, 16 и 1,28 г/дм3 соответственно. При В:O≥7 образуются осадки черного цвета. В процессе экстракции происходит окисление ионов Fe (II) до Fe (III), поэтому кривая 1 получена в расчете на железо общее, а кривая 2 - на Fe (II).
Пример 3 (фиг.4-6, табл.1)
На фиг.4 дана зависимость коэффициента распределения D от исходной концентрации ионов Fe (III) и Fe (II), г/дм3 из их индивидуальных растворов. Условия экстракции: pH 10, O:В=1:3. Экстракция ионов Fe (III) осуществляется практически сразу, остаточная концентрация примерно одинакова и равна С=0,095 г/дм3. При С0>3 г/дм3 образуются осадки бурого цвета. Экстракция ионов Fe (II) осуществляется в пределах 1 часа. При С0>1,6 г/дм3 образуются осадки черного цвета. Зависимости D=f(C0) - линейны:
На фиг.5 дана зависимость остаточной концентрации ионов Fe (II) от времени экстракции. Условия экстракции: pH 10, O:В=1:3, t=22°С. Процесс завершается за время 30 мин при O:В=1:3 и 70 мин при O:В=1:4,5.
На фиг.6 показана изотерма экстракции ионов Fe (II) - зависимость коэффициента распределения D от равновесной концентрации ионов Fe (II), г/дм3. Условия экстракции: pH 10, O:В=1:3, t=22°С.
Данные табл.1 характеризуют зависимости С=f(τ), ln(С0/С)=f(τ), 1/С=f(τ), 1/С2=f(τ). Видно, что при отношении O:В=1:4,5 и t=22°С процесс описывается кинетическим уравнением нулевого порядка, вероятно, что он не зависит от концентрации, а определяется площадью межфазной поверхности.
Из данных табл.1 следует, что при отношении O:В=1:3 функции
ln (С0/С)=f(τ) линейны и имеют вид
ln(С0/С)=Кτ, (1)
где K - константа скорости процесса.
По данным фиг.5 рассчитаны значения K в уравнении (1):
В интервале исходных концентраций С0=0,51-1,59 г/дм3 с увеличением концентрации скорость процесса убывает.
Пример 4 (фиг.7-9, табл.2)
На фиг.7 дана зависимость остаточной концентрации ионов Fe (II) от температуры.
Данные табл.2 характеризуют зависимости С=f(τ), ln(C0/C)=f(τ), 1/C=f(τ), I/С2=f(τ) по данным фиг.7.
Из данных табл.2 следует, что при отношении O:В=1:3 и t=15-35°С функции ln(С0/С)=f(τ) линейны и описываются уравнением (1).
По данным фиг.7 рассчитаны значения К в уравнении (1):
В интервале температур t=15-35°C c увеличением температуры скорость процесса увеличивается.
На фиг.8 дана зависимость коэффициента распределения D от температуры, °C, из индивидуальных растворов солей Fe (III) и Fe (II). Условия экстракции: pH 10, O:В=1:3, Со, г/дм3: 2 Fe (III), 1 Fe (II). Экстракция из растворов соли Fe (III) происходит практически мгновенно, а из растворов солей Fe (II) - в течение часа.
На фиг.9 по данным фиг.7 получена зависимость логарифма остаточной концентрации ионов Fe (II) от обратной температуры T=288, 295, 308°K (t=15, 22, 35°С). Экстрагент - оливковое масло, C0=1,5 г/дм3, рН 10, O:В=1:3.
По данным фиг.9 для уравнения Аррениуса вида
lnk=lnk0-E/RT,
где ln k0 - предэкспонента,
Е - энергия активации процесса экстракции, Дж/моль,
R=8,314 Дж/(моль·градус) - универсальная газовая постоянная,
рассчитана величина энергии активации, равная Е=52378 Дж/моль.
Исходя из кинетического анализа реакции, можно предположить, что первый порядок процесса и средняя величина энергии активации Е=52,4 кДж/моль свидетельствуют о том, что, вероятно, процесс экстракции ионов железа (II) растительным маслом лежит в кинетической области и лимитируется окислением Fe (II) до Fe (III) и последующим образованием комплекса ионов Fe (III) с составляющими экстрагента, который сольватируется в органическую фазу.
Пример 5 (фиг.10).
На фиг.10 дана зависимость коэффициента распределения D от вида растительного масла: 1 - абрикосовое, 2 - тыквенное, 3 - кедровое, 4 - соевое, 5 - виноградное, 6 - кукурузное, 7 - грецкого ореха, 8 - подсолнечное, 9 - льняное, 10 - оливковое.
Условия экстракции: O:В=1:3, pH 10, t=20°С, С0=1,4-1,5 г/дм3.
Все исследованные масла хорошо экстрагируют ионы Fe (III).
Высокие показатели экстракции ионов Fe (II) получены для абрикосового, соевого, подсолнечного и льняного масла и плохо экстрагируют ионы Fe (II) оливковое, тыквенное, кедровое и кукурузное.
Пример 6 (табл.3)
В табл.3 даны результаты экстракции ионов железа из смеси солей Fe (II) и Fe (III). Условия экстракции: pH 10; O:В=1:4,5; t=20°С, время экстракции 1-3 мин, начальная концентрация С0 и конечная концентрация С, г/дм. Получены коэффициент распределения D, коэффициент разделения β=DFe(III)/DFe(II), извлечение ε, в % от исходного. Видно, что с увеличением концентрации коэффициент разделения растет.
В процессе экстракции экстракт имеет структуру геля, его объем увеличивается на 5-10% от объема экстрагента.
Осадки гидроксокомплексов Fe (III) имеют бурый, а осадки Fe (II) - черный цвет. Осадки черного цвета после сушки магнитны и имеют состав FeO·Fe2O3 или Fe3O4.
Высокие показатели экстракции получены, вероятно, потому, что в составе растительных масел содержатся олеиновая кислота и другие компоненты, способные экстрагировать ионы тяжелых металлов. Растительные масла - это насыщенные и ненасыщенные (с одной, двумя и тремя двойными связями) одноосновные жирные кислоты с неразветвленной углеродной цепью и четным числом углеродных атомов (преимущественно C16 и C18). Так, содержание олеиновой кислоты, % мас.: в подсолнечном масле 24-40, в кукурузном масле - 30-49, в оливковом масле - около 80, в соевом масле - 23-29. Кроме того, в растительных маслах обнаружены в небольших количествах жирные кислоты с нечетным числом углеродных атомов (от C15 до С23).
Высокие показатели экстракции ионов цветных металлов растительными маслами свидетельствуют также о том, что в зоне влияния промышленных предприятий ионы цветных металлов могут накапливаться в растениях из почвы, особенно при сбросе неочищенных промышленных сточных вод. Это говорит о высокой экологической опасности для растений и животных ионов цветных металлов, попадающих в почву в результате деятельности промышленных предприятий.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ | 2014 |
|
RU2576569C2 |
ЭКСТРАКЦИЯ ИОНОВ ЦИНКА ИЗ ВОДНЫХ РАСТВОРОВ РАСТИТЕЛЬНЫМИ МАСЛАМИ | 2012 |
|
RU2499063C2 |
ЭКСТРАКЦИЯ ИОНОВ СВИНЦА ИЗ ВОДНЫХ РАСТВОРОВ РАСТИТЕЛЬНЫМИ МАСЛАМИ | 2012 |
|
RU2501868C2 |
СПОСОБ ОЧИСТКИ НИКЕЛЕВОГО ЭЛЕКТРОЛИТА ОТ ПРИМЕСЕЙ ЖЕЛЕЗА (III), КОБАЛЬТА (III) И МЕДИ (II) ЭКСТРАКЦИЕЙ | 2015 |
|
RU2604289C1 |
СПОСОБ ЭКСТРАКЦИИ ЖЕЛЕЗА (III) И МЕДИ (II) ИЗ ВОДНЫХ РАСТВОРОВ СМЕСЬЮ ОЛЕИНОВОЙ КИСЛОТЫ И ТРИЭТАНОЛАМИНА В КЕРОСИНЕ | 2015 |
|
RU2591915C1 |
СПОСОБ ОЧИСТКИ НИКЕЛЕВОГО ЭЛЕКТРОЛИТА ОТ ПРИМЕСЕЙ ЖЕЛЕЗА (III) И МЕДИ (II) ЭКСТРАКЦИЕЙ СМЕСЬЮ ОЛЕИНОВОЙ КИСЛОТЫ И ТРИЭТАНОЛАМИНА | 2015 |
|
RU2604286C1 |
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ ЖЕЛЕЗА (III) И МАРГАНЦА (II) ИЗ ВОДНЫХ РАСТВОРОВ | 2019 |
|
RU2698083C1 |
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ ЖЕЛЕЗА (III) И МЕДИ (II) ИЗ ВОДНЫХ РАСТВОРОВ | 2019 |
|
RU2702185C1 |
СПОСОБ СЕЛЕКТИВНОЙ ЭКСТРАКЦИИ ЖЕЛЕЗА (III) И ЦИНКА (II) ИЗ ВОДНЫХ РАСТВОРОВ ТРИБУТИЛФОСФАТОМ | 2014 |
|
RU2581316C1 |
ЭКСТРАКЦИЯ ИОНОВ ЖЕЛЕЗА (III) ИЗ ВОДНЫХ РАСТВОРОВ ТРИБУТИЛФОСФАТОМ | 2014 |
|
RU2572927C1 |
Изобретение может быть использовано в химической промышленности, металлургии и очистке промышленных и бытовых стоков. Экстракцию железа растительными маслами осуществляют из водного раствора при отношении водной (В) к органической (О) фазе В:O≥3 для Fe (III) и В:O=3-6 для Fe (II); при рН 2-3 для Fe (III) и 9-11 для Fe (II) и Fe (III). Время экстракции для Fe (III) 1-3 мин и не более 60 мин для Fe (II). Предложенный способ обеспечивает высокую степень эффективности извлечения железа из водных растворов с одновременной экономичностью и безопасностью процесса. 1 з.п. ф-лы, 10 ил., 3 табл.
Способ экстракции ионов железа из водного раствора, включающий контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз, отличающийся тем, что экстракцию осуществляют из водного раствора растительными маслами при отношении водной (В) к органической (О) фазе В:О≥3 для Fe (III) и В:O=3-6 для Fe (II); при рН 2-3 для Fe (III) и 9-11 для Fe (II) и Fe (III) и времени экстракции 1-3 мин для Fe (III) и не более 60 мин для Fe (II).
Способ экстракционно-фотометрического определения железа | 1979 |
|
SU880989A1 |
Способ извлечения железа ( @ ) из водных растворов | 1980 |
|
SU1198003A1 |
Способ получения фурфурола | 1929 |
|
SU17215A1 |
US 20100119429 A1, 13.05.2010. |
Авторы
Даты
2013-09-10—Публикация
2012-01-31—Подача