СПОСОБ ВЫСОТНЫХ ИСПЫТАНИЙ КРУПНОГАБАРИТНОГО РДТТ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2013 года по МПК F02K9/96 G01M15/14 

Описание патента на изобретение RU2492341C1

Изобретение относится к области ракетной техники, а именно к высотным испытаниям крупногабаритного РДТТ.

В процессе отработки крупногабаритных РДТТ необходимо подтверждение их работоспособности и определение характеристик в условиях вакуума. При этом решаются такие задачи как: отработка высотных сопел, в том числе с тонкостенными насадками, определение энергетических характеристик, подтверждение стабильности технологии и качества серийного изготовления элементов РДТТ.

Известны способ и установка для испытаний РДТТ, в которых для создания высотных условий применяют эжектор, позволяющие за счет энергии струи продуктов сгорания создавать требуемое разрежение в зоне сопла [Шишков А.А., Силин Б.М. Высотные испытания реактивных двигателей.- М.: Машиностроение, 1985, - с.20, рис.1.9 в].

Известный аналог не обеспечивает требуемое разрежение на участках выхода РДТТ на режим и спад давления, что не позволяет проводить испытания с тонкостенными соплами и сопловыми насадками из-за возможности их разрушения под действием нестационарных снимающих нагрузок.

Известны также способ и реализующая его установка с обеспечением вакуума на установившемся режиме работы РДТТ за счет энергии струи продуктов сгорания и выходе на режим и спаде давления за счет предварительного вакуумирования барокамеры и за счет мощных откачивающих устройств (эжекторов) [там же, рис.1.9 ж].

Установка для реализации данного способа содержит барокамеру для размещения в ней испытуемого РДТТ с системой предварительной откачки воздуха, выхлопной диффузор, эжекторы для обеспечения разрежения, например, в период окончания работы РДТТ, клапан-заслонку, установленную на выходе из эжектора.

Перед запуском РДТТ осуществляют предварительную откачку воздуха, создавая в объеме установки необходимое разрежение. Далее происходит запуск РДТТ и после достижения давления запуска диффузора обеспечение вакуума осуществляется за счет собственной струи продуктов сгорания твердого топлива. На установившемся режиме и на спаде давления при окончании работы РДТТ включается эжекторная система, обеспечивая при этом постоянное требуемое разрежение.

Известные способ и установка обладают рядом недостатков. При предварительной откачке воздуха из полости барокамеры ее внутренний объем должен быть замкнутым. На выходе из эжектора должна быть установлена заглушка, отбрасываемая под действием небольшого перепада давления или принудительно. После запуска РДТТ (вылета сопловой заглушки) продукты сгорания твердого топлива поступают в эжектор и, достигая отбрасываемой заглушки или открытого выходного сечения диффузора с атмосферным давлением, образуют волну сжатия, которая отражается от заглушки (воздуха атмосферного давления) и движется обратно к выходному сечению сопла. При этом из-за повышенного давления в волне сжатия (при достижении волной сжатия выходного сечения диффузора), может произойти отрыв потока непосредственно внутри испытуемого сопла с дальнейшим разрушением тонкостенного сопла.

Кроме того, дополнительные эжекторы требуют большого расхода газа с целью обеспечения требуемого разрежения на режимах работы РДТТ и следовательно повышенных материальных затрат на испытания.

Известно техническое решение, в котором меньший расход дополнительного газа для обеспечения безотрывного течения в сопле достигается путем использования инжекторов вместо эжекторов. Способ высотных испытаний РДТТ с использованием инжекции в выхлопной диффузор [там же, с.116-119] и установка для реализации данного способа [там же, с.116, рис.3.15] приняты за прототип.

Инжекция газа в отличие от эжекции заключается в том, что дополнительным газом как бы заполняют свободное от продуктов сгорания РДТТ пространство диффузора. При этом требуется меньший расход дополнительного газа и меньшая скорость его вдува, и, как следствие, снижаются затраты на проведение испытания.

Известный способ высотных испытаний РДТТ включает создание требуемого разрежения за счет предварительного вакуумирования пространства вокруг РДТТ при выходе его на установившийся режим, эжектирующих свойств струи продуктов сгорания в диффузоре после выхода на режим и инжекции дополнительного газа в выхлопную магистраль.

Известная установка для высотных испытаний РДТТ содержит барокамеру для размещения в ней испытываемого РДТТ с датчиком давления в камере сгорания, систему предварительной откачки воздуха, выхлопную магистраль с диффузором, систему инжекции газа с источником газа и магистралями для его подвода к инжектирующему средству, откидную заглушку на выходе из установки.

Известные способ и установка не обеспечивают надежную сохранность сопла испытываемого двигателя при воздействии отраженной волны сжатия. Кроме этого, инжекцию дополнительного газа осуществляют во входную часть диффузора, где требуется относительно высокая скорость инжектируемого газа (выше, чем скорость продуктов сгорания на выходе из сопла) и его температура (нагретый пар, продукты сгорания ЖРД и т.п.). Это приводит к дополнительным материальным затратам по сравнению, например, с использованием холодного воздуха в качестве инжектируемого газа.

Задачей предлагаемой группы изобретений является создание способа высотных испытаний крупногабаритного РДТТ и установки для его осуществления, позволяющих обеспечить надежное сохранение целостности тонкостенных сопел в течение всего времени работы РДТТ при одновременном уменьшении затрат на создание установки и проведение испытаний.

Поставленная задача достигается предлагаемым способом высотных испытаний крупногабаритного РДТТ, включающим создание требуемого разрежения за счет предварительного вакуумирования пространства вокруг РДТТ при выходе его на установившийся режим, эжектирующих свойств струи продуктов сгорания в диффузоре после выхода на режим и инжекции дополнительного газа в выхлопную магистраль. Особенность заключается в том, что при выходе на режим запуск диффузора обеспечивают до момента достижения его отраженной от элементов конструкции волной сжатия продуктов сгорания твердого топлива, а при спаде давления в РДТТ осуществляют инжекцию дополнительного газа в выхлопную магистраль, непосредственно за диффузором, обеспечивая при этом изменение его расхода обратно пропорционально изменению расхода продуктов сгорания РДТТ, а затем плавно уменьшая расход инжектируемого газа до нуля, причем в качестве газа для инжекции используют сжатый воздух высокого давления.

Поставленная задача достигается предлагаемой установкой для высотных испытаний крупногабаритного РДТТ, содержащей барокамеру для размещения в ней испытываемого РДТТ с датчиком давления в камере сгорания, систему предварительной откачки воздуха, выхлопную магистраль с диффузором, систему инжекции газа с источником газа и магистралями для его подвода к инжектирующему средству, откидную заглушку на выходе из установки. Особенность заключается в том, что в выхлопной магистрали на выходе из диффузора дополнительно смонтирован коллектор большего диаметра и длиной 125 - 150 м, зона контакта диффузора и коллектора снабжена камерой, отделяющей ее от внешней среды, инжектирующее средство размещено между диффузором и коллектором и выполнено в виде сопел, или в виде кольцевого инжектора, функцию которого выполняет сквозной зазор между диффузором и коллектором, или в виде перфорации перекрытого зазора между диффузором и коллектором, при этом источник инжектируемого газа представляет собой баллоны со сжатым воздухом, а на магистралях подвода сжатого воздуха к инжектирующему средству смонтированы регуляторы расхода, приводы которых соединены электрическими цепями последовательно с задатчиком расхода сжатого воздуха, сигнализатором давления, реле задержки сигнала и датчиком давления в камере сгорания РДТТ.

Предлагаемая группа изобретений иллюстрируется графическими изображениями.

На фиг.1 показано расположение на испытательной площадке установки для высотных испытаний крупногабаритного РДТТ.

На фиг.2 показана схема установки для высотных испытаний крупногабаритного РДТТ.

На фиг.3 показана характерная зависимость расхода продуктов сгорания РДТТ и инжектируемого воздуха от времени работы установки.

На фиг.4 показана экспериментально полученная зависимость изменения давления в барокамере при окончании работы РДТТ и дополнительной инжекции воздуха.

Установка для высотных испытаний крупногабаритного РДТТ содержит барокамеру 1 для размещения в ней испытываемого РДТТ 2 с датчиком давления 3 в камере сгорания, систему предварительной откачки воздуха 4, выхлопную магистраль с диффузором 5 и коллектором 6, камеру 7, отделяющую от внешней среды зону контакта диффузора 5 и коллектора 6, систему инжекции сжатого воздуха с источником сжатого воздуха высокого давления 8 в виде баллонов и магистралями для его подвода к инжектирующему средству, в частности соплам 9, откидную заглушку 10 на выходе из установки. Магистрали подвода сжатого воздуха к соплам 9 оснащены регуляторами расхода 11, приводы которых соединены электрическими цепями последовательно с задатчиком расхода воздуха 12, сигнализатором давления 13, реле задержки сигнала 14 и датчиком давления 3 в камере сгорания РДТТ.

Альтернативные формы выполнения инжектирующего средства могут быть реализованы обычными конструкторскими приемами с обеспечением требуемого расхода сжатого воздуха. Конкретное конструктивное воплощение выбирают в соответствии с требованиями конечного применения и потребностями заказчика.

Предлагаемая установка для высотных испытаний крупногабаритного РДТТ работает следующим образом.

Предварительно производят вакуумирование полости барокамеры 1, затем подается команда на запуск РДТТ 2. Продукты сгорания истекают из сопла, и заполняют диффузор 5 и коллектор 6, и движутся по направлению к заглушке 10.

После достижения продуктами сгорания заглушки 10 под действием небольшого перепада давления (или принудительно по команде) она открывается. Образовавшаяся волна сжатия начинает двигаться по коллектору 6 в обратном направлении. При этом продолжается рост давления на срезе сопла РДТТ 2. Из-за повышенного давления в волне сжатия при достижении волной сжатия выходного сечения сопла РДТТ (входа в диффузор со стороны сопла) может произойти повышение давления вокруг сопла, отрыв потока непосредственно внутри испытываемого сопла с дальнейшим его разрушением. Для исключения отрыва потока необходимо обеспечить повышение давления в волне сжатия меньшее, чем давление запуска диффузора. В этом случае волна сжатия не может привести к отрыву потока в сопле и создать повышение давления на внешней и внутренней поверхности сопла. Установлено, что для отбрасывания заглушки 10 достаточно избыточного давления ΔP=0,2 кгс/см2. При этом максимальное давление в волне сжатия составит:

P1=ΔP+PH=1,2 кгс/см2,

где PH - наружное (атмосферное) давление.

Оценку пускового давления РОП диффузора производят по формуле:

P О П P 1 = F Г F ,

где F* - площадь критического сечения сопла РДТТ;

FГ - проходная площадь диффузора, рассчитанная как:

F Г = F a q ( 1 λ a ) ,

где λa - приведенная скорость потока,

q - газодинамическая функция.

Индексы «1» и «а» относятся к входу в диффузор 5 со стороны сопла, когда к нему и, соответственно, к выходному сечению сопла подошла волна сжатия.

Время t2 достижения давления РОП и, следовательно, безотрывного течения в сопле составит:

t 2 = P О П ( d P 0 d t ) ,

где d P 0 d t - скорость нарастания давления в камере РДТТ.

Время достижения прямой волной сжатия заглушки 10 и отраженной волной выходного сечения диффузора 5, считая, что расстояние от выходного сечения диффузора 5 до сопла РДТТ 2 мало по сравнению с длиной коллектора 6, определяют как:

t 1 = L a в + L a Г ,

где L - длина коллектора;

ав - скорость звука в воздухе;

аГ - скорость звука в продуктах сгорания твердого ракетного топлива.

Чтобы исключить «срыв» диффузора 5 при запуске РДТТ 2 из-за приближения волны сжатия, необходимо выполнить условие:

t1≥t2, или L a в + L a Г P 1 F a q ( 1 λ a ) ( d P 0 d t ) F , откуда следует, что длина коллектора 6 должна быть не менее L P 1 F a q ( 1 λ a ) ( d P 0 d t ) F ( 1 a в + 1 a Г )

Проведенный анализ разработанных ранее существующих и перспективных РДТТ высотных ступеней (II, III ступень) боевых БРДД ракет, а также космических ракет показывает, что градиент нарастания давления при их запуске (до достижения пускового давления РОП) лежит в пределах d P 0 d t = 300 1100 к г с / с м 2 с, а степень расширения сопел ζ = F a F в пределах ζ=5-10.

В этом случае длина коллектора 6 должна составлять 125-150 м. При этом обеспечивается надежный запуск РДТТ 2 в предложенной установке с обеспечением гарантированной целостности тонкостенных сопел.

После запуска диффузора 5 и выхода РДТТ 2 на установившийся режим требуемое разряжение в объеме вокруг РДТТ 2 создается за счет энергии струи продуктов сгорания твердого топлива. На установившемся режиме с заданной задержкой срабатывает реле задержки сигнала 14 по давлению в камере сгорания РДТТ 2. Сигнал поступает к сигнализатору давления 13, настроенному на уровень пускового давления РОП диффузора 5. После достижения давления РОП на режиме окончания работы и спада давления по команде сигнализатора 13 включается задатчик расхода воздуха 12, по сигналу которого происходит открытие регуляторов расхода 11 по заданной программе, обеспечивающей требуемый расход воздуха через инжектирующее средство, в частности сопла 9. При этом за счет задержки сигнала (реле 14) не происходит открытие регуляторов 11 при достижении давления РОП на участке выхода на режим. Воздух, заполняя освобождающийся при уменьшении расхода продуктов сгорания РДТТ 2 объем коллектора 6, предотвращает отрыв потока в диффузоре 5 и обеспечивает постоянное давление разряжения вокруг испытываемого сопла. При этом суммарный расход воздуха и продуктов сгорания остается примерно постоянным и равным расходу продуктов сгорания на установившемся режиме работы РДТТ 2. После спада давления в РДТТ 2 и достижения максимального расхода инжектируемого воздуха осуществляется плавное его уменьшение и при этом плавное увеличение давления вокруг испытываемого сопла вплоть до атмосферного.

Отличие предлагаемого способа от прототипа заключается в том, что инжекцию осуществляют в районе выходного сечения диффузора, что позволяет снизить скорость потока продуктов сгорания РДТТ до λ,=0,3-0,5 и использовать для инжекции сжатый воздух, обеспечивая ту же скорость при его инжекции. При этом исключается турбулентное перемешивание разноскоростных потоков, исключается отрывное течение и обеспечивается надежная работа диффузора.

Обеспечить скорость инжектируемого холодного воздуха такую же, как скорость продуктов сгорания РДТТ на срезе сопла невозможно. С целью определения возможности применения сжатого воздуха в инжекторной системе при наличии коллектора 6, площадь поперечного сечения которого приблизительно в 140 раз превосходит площадь критического сечения каждого из сопел (что примерно соответствует практическому использованию сопла), проведены эксперименты (фиг.3), в результате которых установлена зависимость давления в магистрали подвода воздуха перед каждым соплом Pd от давления в нем Рс, работающем в режиме сопровождения как в предлагаемой установке, т.е. при подъеме давления в каждом сопле до величины, обеспечивающей запуск диффузора с выходом на минимальное давление в магистрали подвода воздуха перед каждым соплом, и последующим плавным сбросом давления до атмосферного (фиг.4). При плавном возрастании давления в каждом сопле от 1 кгс/см2 до 130 кгс/см2 давление в магистрали подвода воздуха перед каждым соплом плавно уменьшалось от 1 кгс/см2 до 0,05 кгс/см2. Также плавно возрастает указанное давление при уменьшении давления в каждом сопле от 130 кгс/см2, т.е. отсутствуют резкие скачкообразные изменения давления в коллекторе 6.

При спаде давления в двигателе в конце работы, начиная с какого-то момента, энергии струи испытываемого двигателя становится недостаточно для восстановления статического давления в диффузоре 5 до атмосферного, поэтому ее необходимо компенсировать за счет энергии инжектируемого воздуха. При уменьшении давления в двигателе в конце работы давление каждого сопла и соответственно расход воздуха должны возрастать и обеспечивать тем самым постоянный уровень разряжения на выходе из диффузора 5, необходимый для нормальной его работы и соответственно бездефектной работы сопла РДТТ. При отсутствии скачкообразных изменений давления за соплами и на выходе из диффузора 5 при безотрывном течении и уменьшении давления в РДТТ вплоть до полной остановки (при инжекции воздуха с увеличением по времени его расхода обратно пропорционально расходу продуктов сгорания РДТТ) будет обеспечено примерно постоянное давление в барокамере. После окончания работы РДТТ осуществляется плавное уменьшение расхода воздуха через сопла. При этом будет обеспечено плавное увеличение давления в барокамере и отсутствие резких перепадов давления на стенках испытываемого сопла. Организация такого процесса позволяет исключить повреждение тонкостенных сопел при окончании работы РДТТ.

Одновременно достигается минимизация затрат на создание установки и проведение испытаний в отличие от известных баростендов, которые включают большой предварительно откачиваемый объем, например подземную шахту, или постоянное эжекторное сопровождение нагретым газом (например паровой эжектор), что требует гораздо больших затрат на подготовку и проведение испытаний.

Таким образом, предлагаемый способ высотных испытаний крупногабаритного РДТТ и установка для его осуществления практически реализуемы, позволяют удовлетворить давно существующую потребность в решении поставленной задачи.

Похожие патенты RU2492341C1

название год авторы номер документа
ВЫСОТНЫЙ СТЕНД ДЛЯ ИСПЫТАНИЙ РАКЕТНЫХ ДВИГАТЕЛЕЙ 1993
  • Багдасарьян Александр Александрович
  • Багдасарьян Михаил Александрович
  • Шишков Альберт Алексеевич
  • Вакуличев Владимир Тихонович
  • Беляков Владимир Сергеевич
RU2075742C1
СТЕНД ДЛЯ ВЫСОТНЫХ ИСПЫТАНИЙ РАКЕТНЫХ ДВИГАТЕЛЕЙ С ТОНКОСТЕННЫМИ СОПЛАМИ 2013
  • Назарцев Александр Александрович
  • Патрулин Сергей Владимирович
RU2513063C1
УСТАНОВКА ДЛЯ ИСПЫТАНИЙ ВЫСОТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ НА ТВЕРДОМ ТОПЛИВЕ 2013
  • Минченков Александр Михайлович
  • Каримов Владислав Закирович
  • Патрулин Сергей Владимирович
RU2514326C1
ВЕТРОГАЗОТУРБИННАЯ ЭЛЕКТРОСТАНЦИЯ 1998
  • Артамонов А.С.
RU2157902C2
Установка для гашения ракетного двигателя на твердом топливе при испытаниях 2016
  • Патрулин Сергей Владимирович
  • Назарцев Александр Александрович
  • Горшков Юрий Александрович
RU2620460C1
Стенд для высотных испытаний ракетных двигателей твердого топлива 2016
  • Ефремов Андрей Николаевич
  • Тимаров Алексей Георгиевич
RU2618986C1
СПОСОБ ИСПЫТАНИЯ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ 1992
  • Андреев П.П.
  • Баклыков Ю.Д.
  • Гудков М.М.
  • Ерофеев Б.С.
  • Фабрин Ю.Н.
RU2050459C1
Способ имитации высотных условий при испытании ракетных двигателей 2017
RU2698555C2
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЙ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ (ВАРИАНТЫ) 2009
  • Губертов Арнольд Михайлович
  • Миронов Вадим Всеволодович
  • Борисов Дмитрий Марианович
  • Давыденко Николай Андреевич
  • Гурина Ирина Николаевна
RU2391548C1
Установка для высотных испытаний двигателей летательных аппаратов 2022
  • Александров Вадим Юрьевич
  • Ананян Марлен Валерьевич
  • Арефьев Константин Юрьевич
  • Заикин Сергей Владимирович
  • Ильченко Михаил Александрович
  • Козерод Александр Владимирович
  • Кручков Сергей Владимирович
  • Кузьмичев Дмитрий Николаевич
  • Прохоров Александр Николаевич
  • Стадников Виктор Геннадьевич
  • Юрин Вадим Петрович
RU2797789C1

Иллюстрации к изобретению RU 2 492 341 C1

Реферат патента 2013 года СПОСОБ ВЫСОТНЫХ ИСПЫТАНИЙ КРУПНОГАБАРИТНОГО РДТТ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

При высотных испытаниях ракетного двигателя создают разрежение за счет предварительного вакуумирования пространства вокруг двигателя, эжектирующих свойств струи продуктов сгорания в диффузоре и инжекции дополнительного газа в выхлопную магистраль. Запуск диффузора обеспечивают до момента достижения его отраженной волной сжатия продуктов сгорания. При спаде давления в ракетном двигателе инжектируют дополнительный газ в выхлопную магистраль, непосредственно за диффузором, обеспечивая изменение его расхода обратно пропорционально изменению расхода продуктов сгорания. Затем плавно уменьшают расход инжектируемого газа до нуля. В качестве газа для инжекции используют сжатый воздух высокого давления. Установка для высотных испытаний содержит барокамеру для размещения в ней ракетного двигателя с датчиком давления в камере сгорания, систему предварительной откачки воздуха, выхлопную магистраль с диффузором, систему инжекции газа с источником газа и магистралями для его подвода к инжектирующему средству и откидную заглушку. В выхлопной магистрали на выходе из диффузора установлен коллектор большего диаметра и длиной 125-150 м. Зона контакта диффузора и коллектора снабжена камерой, отделяющей ее от внешней среды. Инжектирующее средство размещено между диффузором и коллектором и выполнено в виде сопел, или в виде кольцевого инжектора, функцию которого выполняет сквозной зазор между диффузором и коллектором, или в виде перфорации перекрытого зазора между диффузором и коллектором. Источник инжектируемого газа представляет собой баллоны со сжатым воздухом, а на магистралях подвода сжатого воздуха к инжектирующему средству смонтированы регуляторы расхода. Приводы регуляторов расхода соединены электрическими цепями последовательно с задатчиком расхода сжатого воздуха, сигнализатором давления, реле задержки сигнала и датчиком давления в камере сгорания ракетного двигателя. Группа изобретений позволяет обеспечить надежное сохранение целостности тонкостенных сопел в течение всего времени работы ракетного двигателя, при упрощении испытательной установки. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 492 341 C1

1. Способ высотных испытаний крупногабаритного РДТТ с созданием требуемого разрежения за счет предварительного вакуумирования пространства вокруг РДТТ при выходе его на установившийся режим, эжектирующих свойств струи продуктов сгорания в диффузоре после выхода на режим и инжекции дополнительного газа в выхлопную магистраль, отличающийся тем, что при выходе на режим запуск диффузора обеспечивают до момента достижения его отраженной от элементов конструкции волной сжатия продуктов сгорания твердого топлива, а при спаде давления в РДТТ осуществляют инжекцию дополнительного газа в выхлопную магистраль, непосредственно за диффузором, обеспечивая при этом изменение его расхода обратно пропорционально изменению расхода продуктов сгорания РДТТ, а затем плавно уменьшая расход инжектируемого газа до нуля, причем в качестве газа для инжекции используют сжатый воздух высокого давления.

2. Установка для высотных испытаний крупногабаритного РДТТ, содержащая барокамеру для размещения в ней испытываемого РДТТ с датчиком давления в камере сгорания, систему предварительной откачки воздуха, выхлопную магистраль с диффузором, систему инжекции газа с источником газа и магистралями для его подвода к инжектирующему средству, откидную заглушку на выходе из установки, отличающаяся тем, что в выхлопной магистрали на выходе из диффузора дополнительно смонтирован коллектор большего диаметра и длиной 125-150 м, зона контакта диффузора и коллектора снабжена камерой, отделяющей ее от внешней среды, инжектирующее средство размещено между диффузором и коллектором и выполнено в виде сопел, или в виде кольцевого инжектора, функцию которого выполняет сквозной зазор между диффузором и коллектором, или в виде перфорации перекрытого зазора между диффузором и коллектором, при этом источник инжектируемого газа представляет собой баллоны со сжатым воздухом, а на магистралях подвода сжатого воздуха к инжектирующему средству смонтированы регуляторы расхода, приводы которых соединены электрическими цепями последовательно с задатчиком расхода сжатого воздуха, сигнализатором давления, реле задержки сигнала и датчиком давления в камере сгорания РДТТ.

Документы, цитированные в отчете о поиске Патент 2013 года RU2492341C1

Конструкция и отработка РДТТ
/ Под ред
А.М.Виницкого
- М.: Машиностроение, 1980, с
Счетный сектор 1919
  • Ривош О.А.
SU107A1
DE 3633683 C1, 06.08.1987
УСТРОЙСТВО ДЛЯ ПОДАЧИ ЖИДКОСТИ В ГАЗОЖИДКОСТНОЙ ЭЖЕКТОР СТЕНДА ДЛЯ ИСПЫТАНИЙ РАКЕТНЫХ ДВИГАТЕЛЕЙ 2000
  • Игнатьев Б.С.
  • Петров В.Ю.
  • Аликин В.Н.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Петренко В.И.
  • Русак А.М.
RU2173840C1
US 3205705 A, 14.09.1965
СТЕНД ОГНЕВЫХ ИСПЫТАНИЙ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ 2008
  • Сафронов Евгений Иванович
  • Ширин Иван Андреевич
  • Худяков Владимир Николаевич
  • Ушков Николай Павлович
RU2433296C2
ДИФФУЗОР ДЛЯ ИСПЫТАНИЯ РАКЕТНЫХ ДВИГАТЕЛЕЙ С СОПЛАМИ ПЕРЕМЕННОЙ СТЕПЕНИ РАСШИРЕНИЯ 2007
  • Макаревич Юрий Леонидович
  • Зарицкий Владимир Игнатьевич
  • Кац Иосиф Рахмаилович
RU2362038C1

RU 2 492 341 C1

Авторы

Соломонов Юрий Семенович

Жарков Александр Сергеевич

Литвинов Андрей Владимирович

Коваленко Геннадий Павлович

Петрусев Виктор Иванович

Евгеньев Алексей Майевич

Смирнов Михаил Григорьевич

Нестеров Александр Алексеевич

Власова Людмила Владимировна

Даты

2013-09-10Публикация

2012-06-09Подача