СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2013 года по МПК F02C9/46 

Описание патента на изобретение RU2493392C2

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Известен способ защиты ГТД от перегрева газогенератора, реализованный в гидромеханической САУ с электронным ограничителем температуры газов за турбиной, заключающийся в том, что измеряют температуру газов за турбиной, сравнивают ее значение с предельно допустимым, если измеренная температура газов превысила предельное значение на наперед заданную величину, выключают двигатель [Кеба И.В. Летная эксплуатация вертолетных ГТД. М.: Транспорт, 1976 г., с.180-182].

Недостатком известного способа является его низкая эффективность и невозможность использования на одномоторных летательных аппаратах (ЛА).

Наиболее близким к данному изобретению по технической сущности является способ защиты ГТД, заключающийся в том, что измеряют и контролируют основные параметры турбокомпрессора двигателя, в случае превышения хотя бы одним параметром контрольного значения снижают расход топлива в камеру сгорания [Новиков А.С., А.Г.Пайкин, Н.Н.Сиротин. Контроль и диагностика технического состояния газотурбинных двигателей. М.: Наука, 2007 г., с.87].

Недостатки известного способа следующие. Снижение расхода топлива при реализации известного способа защиты ГТД выполняют с помощью дозатора топлива, управляемого электронным регулятором через электрогидравлический преобразователь. Каждый элемент этого контура управления имеет свою наработку на отказ. В силу этого возможно возникновение ситуации, когда из-за отказа будет происходить неконтролируемое движение дозатора в сторону увеличения расхода топлива в камеру сгорания (КС) двигателя. Для двигателя ПД-14, входящего в состав силовой установки (СУ) самолета МС-21, это приведет в первую очередь к увеличению частоты вращения ротора компрессора высокого давления и, как следствие, к неконтролируемому росту тяги СУ. На ряде режимов полета самолета (для самолета МС-21, например, это режимы «Взлет», «Прерванный взлет», «Посадка») это является недопустимым и создает предпосылку к летному происшествию с катастрофическими последствиями. Т.о. не обеспечивается надежность работы двигателя и безопасность самолета.

Целью изобретения является повышение качества работы САУ и, как следствие, повышение надежности работы двигателя и безопасности самолета.

Поставленная цель достигается тем, что в способе защиты ГТД, заключающемся в том, что измеряют и контролируют основные параметры турбокомпрессора ГТД, в случае превышения хотя бы одним параметром контрольного значения снижают расход топлива в КС ГТД, дополнительно замеряют частоту вращения компрессора ГТД, сравнивают ее с наперед заданным значением, определяемым расчетно-экспериментальным путем для каждого типа ГТД, уточняемым в процессе приемосдаточных испытаний (ПСИ) для каждого конкретного ГТД и корректируемым в зависимости от положения рычага управления двигателя (РУД), температуры и давления воздуха на входе в ГТД скорости полета самолета и величины отборов воздуха из компрессора ГТД на самолетные нужды, в случае если частота вращения компрессора ГТД растет и становится больше наперед заданного значения, уменьшают расход топлива в КС ГТД с помощью резервного устройства дозирования до тех пор, пока частота вращения компрессора ГТД не снизится до наперед заданного значения, обеспечивающего тягу ГТД требуемого уровня.

На фигуре представлена схема устройства, реализующая заявляемый способ.

Устройство содержит последовательно соединенные блок 1 датчиков (БД 1), электронный регулятор 2 (РЭД), первый электрогидропреобразователь (ЭГП) 3, дозатор 4 топлива (ДТ), золотник 5 слива, клапан 6 прекращения подачи топлива (КО), причем ДТ 4 подключен к БД 1, золотник 5 через второй ЭГП 7 подключен ко второму управляющему выходу РЭД 2, КО 6 через третий ЭГП 8 подключен к третьему управляющему выходу РЭД 2.

РЭД 2 представляет собой бортовую цифровую вычислительную машину (БЦВМ), содержащую постоянное запоминающее устройство (ПЗУ), в котором содержится программное обеспечение (ПО), реализующее алгоритмы управления двигателем. Дополнительно БЦВМ оснащена устройствами ввода/вывода (УВВ) физических сигналов (из БД 1), оперативным запоминающим устройством (ОЗУ), необходимым для обработки процессором БЦВМ поступающей из УВВ информации, репрограммируемым запоминающим устройством (РПЗУ), необходимым для хранения информации, относящейся к индивидуальным характеристикам двигателя (эксплуатационные регулировки, наработки, остаток ресурса). БЦВМ, ПЗУ, ПО, УВВ, ОЗУ, процессор, РПЗУ на фигуре не показаны.

Устройство работает следующим образом.

В РЭД 2 с помощью БД 1 измеряют температуру газов за турбиной и сравнивают ее значение с заданным, хранящимся в ПЗУ (для двигателя ПС-90А2 производства ОАО «Авиадвигатель», г.Пермь, контрольное значение температуры газов за турбиной низкого давления равно 855 К). Если измеренная температура газов превысила заданное значение, по команде РЭД 2 в ЭГП 3 (например, типа ПС-7-5) с помощью ДТ 4 уменьшают расход топлива в КС до тех пор, пока измеренная температура газов не станет меньше заданного значения.

Аналогичным образом контролируются частота вращения ротора вентилятора (для двигателя ПС-90А2 контрольное значение частоты вращения ротора вентилятора равно 4650 об/мин) и давление воздуха за компрессором (для двигателя ПС-90А2 контрольное значение давления воздуха за компрессором равно 40 кгс/см2).

Дополнительно в РЭД 2 с помощью БД 1 замеряют частоту вращения компрессора двигателя, сравнивают ее с наперед заданным значением, определяемым расчетно-экспериментальным путем для каждого типа двигателя, уточняемым в процессе приемосдаточных испытаний (ПСИ) для каждого конкретного двигателя и корректируемым в зависимости от положения рычага управления двигателя (РУД), температуры и давления воздуха на входе в двигатель, скорости полета самолета и величины отборов воздуха из компрессора двигателя на самолетные нужды.

Для двигателя ПД-14 это значение частоты вращения определяется по формуле:

N в д п р о г = ( 15692 + R В Д i ) C α Р У Д n в д С Т в х  min n в д С P в х n в д С M п n в д C О Т Б + А         (1)

где N в д п р о г - наперед заданное значение частоты вращения компрессора;

15692 об/мин - базовое значение частоты вращения для двигателя типа ПД-14;

RВДi - регулировка базового значения частоты вращения компрессора, определяется в процессе ПСИ каждого конкретного двигателя в зависимости от его индивидуальных характеристик;

C α Р У Д n в д - коэффициент коррекции базового отрегулированного значения частоты вращения компрессора, зависит от положения РУД и для двигателя ПД-14 меняется от 0,52 до 1,0;

С Т в х min n в д - коэффициент коррекции базового отрегулированного значения частоты вращения компрессора, зависит от температуры воздуха на входе в двигатель, для двигателя ПД-14 меняется от 0, 78 до 1,0;

С Р в х n в д - коэффициент коррекции базового отрегулированного значения частоты вращения компрессора, зависит от давления воздуха на входе в двигатель, для двигателя ПД-14 меняется от 1.0 до 1,09;

С М п n в д - коэффициент коррекции базового отрегулированного значения частоты вращения компрессора, зависит от скорости полета самолета, для двигателя ПД-14 меняется от 1,0 до 1,075;

СОТБ - коэффициент коррекции базового отрегулированного значения частоты вращения компрессора, зависит от величины отборов воздуха из компрессора двигателя на самолетные нужды, для двигателя ПД-14 меняется от 0,995 (ПОС крыла включена) до 1,0 (ПОС крыла выключена, ПОС - противообледенительная система);

A - константа, для двигателя ПД-14 равная 420 об/мин.

В случае если частота вращения компрессора растет (для двигателя ПД-14 это означает наличие положительного ускорения ротора компрессора, величина которого не менее 50 об/мин за секунду) и становится больше наперед заданного значения, сформированного в РЭД 2 по зависимости (1), по команде РЭД 2 уменьшают расход топлива в КС с помощью резервного устройства дозирования, выполненного в виде золотника 5, перепускающего часть топлива после ДТ 4 на слив. Золотник 5 управляется РЭД 2 с помощью ЭГП 7 (выполненного, например, в виде электромагнита, работающего в ШИМ-режиме).

Независимо от положения ДТ 4 уменьшение расхода топлива с помощью золотника 5 по команде РЭД 2 выполняют до тех пор, пока частота вращения компрессора не снизится до наперед заданного значения, обеспечивающего тягу двигателя требуемого уровня. Это значение тоже определяется расчетно-экспериментальным путем и для двигателя ПД-14 составляет 0,97 от N в д п р о г , сформированного в РЭД 2 по зависимости (1).

КО 6 и ЭГП 8 используются для прекращения подачи топлива в КС ГТД по команде РЭД 2 при необходимости.

Т.о. за счет повышения качества управления двигателем на критичных режимах полета самолета обеспечивается защита от неконтролируемого роста тяги СУ.

Это повышает надежность работы СУ и безопасность самолета.

Похожие патенты RU2493392C2

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2012
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Остапенко Сергей Владимирович
  • Попов Сергей Владимирович
RU2497001C1
СПОСОБ УПРАВЛЕНИЯ МЕХАНИЗАЦИЕЙ КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Бурдин Валерий Владимирович
  • Гладких Виктор Александрович
RU2514463C1
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2011
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2489592C1
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2011
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Титов Юрий Константинович
RU2472974C2
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ 2012
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Остапенко Сергей Владимирович
RU2497000C1
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ 2012
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Шевяков Виктор Александрович
RU2516761C2
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2010
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Титов Юрий Константинович
RU2474713C2
СПОСОБ УПРАВЛЕНИЯ ЗАПУСКОМ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2011
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2491437C2
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2010
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Остапенко Сергей Владимирович
  • Титов Юрий Константинович
RU2474712C2
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ 2010
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2468257C2

Иллюстрации к изобретению RU 2 493 392 C2

Реферат патента 2013 года СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно замеряют частоту вращения компрессора ГТД, сравнивают ее с наперед заданным значением, определяемым расчетно-экспериментальным путем для каждого типа ГТД, уточняемым в процессе приемосдаточных испытаний (ПСИ) для каждого конкретного ГТД и корректируемым в зависимости от положения рычага управления двигателя (РУД), температуры и давления воздуха на входе в ГТД, скорости полета самолета и величины отборов воздуха из компрессора ГТД на самолетные нужды, в случае если частота вращения компрессора ГТД растет и становится больше наперед заданного значения, уменьшают расход топлива в КС ГТД с помощью резервного устройства дозирования до тех пор, пока частота вращения компрессора ГТД не снизится до наперед заданного значения, обеспечивающего тягу ГТД требуемого уровня. Технический результат изобретения - повышение надежности работы ГТД и безопасности самолета за счет повышения качества работы САУ в части защиты ГТД от неконтролируемого роста тяги на критичных режимах полета самолета. 1 ил.

Формула изобретения RU 2 493 392 C2

Способ защиты газотурбинного двигателя (ГТД), заключающийся в том, что измеряют и контролируют основные параметры турбокомпрессора ГТД, в случае превышения хотя бы одним параметром контрольного значения снижают расход топлива в камеру сгорания (КС) ГТД, отличающийся тем, что дополнительно замеряют частоту вращения компрессора ГТД, сравнивают ее с наперед заданным значением, определяемым расчетно-экспериментальным путем для каждого типа ГТД, уточняемым в процессе приемо-сдаточных испытаний (ПСИ) для каждого конкретного ГТД и корректируемым в зависимости от положения рычага управления двигателя (РУД), температуры и давления воздуха на входе в ГТД, скорости полета самолета и величины отборов воздуха из компрессора ГТД на самолетные нужды, в случае если частота вращения компрессора ГТД растет и становится больше наперед заданного значения, уменьшают расход топлива в КС ГТД с помощью резервного устройства дозирования до тех пор, пока частота вращения компрессора ГТД не снизится до наперед заданного значения, обеспечивающего тягу ГТД требуемого уровня.

Документы, цитированные в отчете о поиске Патент 2013 года RU2493392C2

НОВИКОВ А.С
и др
Контроль и диагностика технического состояния газотурбинных двигателей
- М.: Наука, 2007, с.87
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА В ТУРБОВИНТОВУЮ СИЛОВУЮ УСТАНОВКУ 2006
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Остапенко Сергей Владимирович
RU2334889C2
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННОЙ УСТАНОВКОЙ 2010
  • Бурдин Валерий Владимирович
  • Гладких Виктор Александрович
RU2431753C1
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2006
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Титов Юрий Константинович
RU2329388C1
US 6321525 A, 27.11.2001
JP 7003190 B, 18.01.1995
СПОСОБ ПОЛУЧЕНИЯ ИЗОТОПНО-ОБОГАЩЕННОГО ОКСИДА ТЕЛЛУРА (IV) 2004
  • Калашников Анатолий Леонидович
  • Ушаков Олег Семенович
  • Матюха Владимир Александрович
RU2272783C1

RU 2 493 392 C2

Авторы

Дудкин Юрий Петрович

Гладких Виктор Александрович

Фомин Геннадий Викторович

Даты

2013-09-20Публикация

2011-10-21Подача