ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к дуплексному фильтру со скачкообразным изменением частоты для использования в радиочастотных фильтрах и для подавления сигналов в системе беспроводной связи, многополосной радио-архитектуре, системе рефарминга спектра и в радиотехнических устройствах с программным управлением.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Используемые в настоящее время на базовых станциях радиочастотные фильтры включают механически настраиваемые радиочастотные (РЧ) фильтры. Эти фильтры представляют собой фильтры со связанными резонаторами с расширенным динамическим диапазоном, низким уровнем потерь и хорошей селективностью, но требование механической настройки ограничивает возможность реконфигурации фильтра на несущей частоте. Необходимо разработать фильтр с системой подавления сигнала, в котором не требуется механическая настройка.
Известны конфигурации радиочастотных фильтров с прямой связью и дискретным временем. Известный радиочастотный трехканальный фильтр с дискретным временем и прямой связью, показан на фигуре 1. Он имеет улучшенное разделение путем использования дуплексера. На этой фигуре h1 и h2 - системные блоки, содержащие векторные модуляторы. Символы τ1 и τ2 обозначают фиксированные линии задержки, что классифицирует эту систему как систему с дискретным временем.
Известные радиочастотные фильтры с дискретным временем состоят из контуров или путей прохождения радиочастотных сигналов, включающих настраиваемые фазовращатели и ступенчатые аттенюаторы или векторные модуляторы. Число РЧ контуров ограничено двумя или тремя контурами поскольку, каждый дополнительный контур требует дополнительного разделителя, ответвителя, настраиваемого компонента, блока усиления и элемента задержки. Поэтому в известных системах фильтра, имеющих два или три контура, может быть выполнена фильтрация только низшего порядка. Необходим фильтр с двумя контурами и системой подавления сигнала, которая выполняет фильтрацию более высокого порядка и не нуждается в дополнительных элементах, таких как настраиваемые фазовращатели и ступенчатые аттенюаторы или векторные модуляторы для каждой дополнительной ступени фильтра.
В прошлом настраиваемые фильтры снабжались настраиваемыми конденсаторами, такими как MEM или DST и варикапами. Настраиваемые компоненты таких известных фильтров излучали тепло, и коэффициент добротности настраиваемых конденсаторов ограничен. Ограниченный коэффициент добротности настраиваемых элементов не позволяет использовать их для фильтрации мощных сигналов, а высокие вносимые потери приводят к конфигурациям более высокого порядка. Необходим фильтр, способный фильтровать мощных сигналов с низкими вносимыми потерями для конфигураций высокого порядка. Известные наборы фильтров содержат множество неподвижных фильтров и матрицу переключателя для выбора требуемой конфигурации фильтра. Для набора различных характеристик фильтра требуется большое количество фильтров и большая переключающая матрица. Первое обстоятельство требует значительного пространства и имеет ограниченной диапазон реконфигурирования, тогда как второе обстоятельство увеличивает вносимые потери. Необходим фильтр, занимающий немного места с непрерывным диапазоном реконфигурирования и низкими вносимыми потерями.
В одной конструкции фильтра использовалась система подавления сигналов прямого действия с цифровым сигнальным процессором (DSP) в одном контуре фильтра для подавления сигнала передачи, который проникает в приемник на основной полосе пропускания. Вводом в систему управления прямого действия является основополосный цифровой сигнал, который также направляется в основной передатчик. Система подавления сигнала показана на фигуре 2, но в этой системе может быть подавлена только линейная часть переданного радиочастотного сигнала. Возникает необходимость в системе подавления, которая подавляет не только линейную часть переданного радиочастотного сигнала.
Системы беспроводной связи могут включать системы многополосной радиоархитектуры, способные к рефармингу спектра, и системы радиосвязи с программным управлением. Общие компоненты в системе беспроводной связи, например, в мобильной системе, работающей по протоколу IP, включают, по меньшей мере, один мобильный узел (или пользовательское оборудование) и, по меньшей мере, одну точку доступа АР или базовую станцию (eNodeB или eNB) системы беспроводной связи. Различные компоненты этих систем могут иметь различные названия в зависимости от спецификации, используемой для любой определенной сетевой конфигурации или системы связи. Например, термин "мобильный узел" включает модуль мобильной связи, который называется мобильным терминалом, "смартфоном", или переносное устройство, такое как ноутбук с модулем беспроводной связи. "Мобильный узел" или "пользовательское оборудование" также включает компьютеры (PC), соединенные кабелем (например, телефонной линией ("витая пара"), кабелем Ethernet, оптическим кабелем и т.д.) с беспроводной сетью. Точно так же беспроводная связь в сотовой сети может быть осуществлена различными типами и моделями мобильных терминалов ("сотовых телефонов"), имеющие различные характеристики и функциональность, например, доступ в Интернет, электронную почту, службы обмена сообщениями и т.д.
"Мобильные узлы" могут иногда упоминаться, как пользовательское оборудование, мобильный модуль, мобильный терминал, мобильное устройство или по-другому в зависимости от спецификации, принятой поставщиком оборудования. "Приемник" и "передатчик" расположены в каждой "точке доступа" (АР) типа "базовой станции" или "пользовательского оборудования". Кроме того, такие термины, как передатчик или приемник в настоящем изобретении не ограничиваются только этими компонентами, но могут включать компоненты на каждом модуле мобильной связи или устройстве передачи, расположенном в сети.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение предлагает многополосный режекторный фильтр со скачкообразным изменением частоты для использования в системе беспроводной связи или многополосной радио-архитектуре, при этом указанная система способна к рефармингу спектра и осуществлению радиосвязи с программным управлением. Система имеет большой динамический диапазон, который может использоваться для передачи мощных передаваемых сигналов или для обработки слабых принимаемых сигналы в присутствии блокираторов. В изобретении используется узкополосный режекторный фильтр, чтобы снизить требования к динамическому диапазону фильтра с дискретным временем, когда существует большой динамический диапазон между полосой пропускания и желательной полосой задержания.
Настоящее изобретение может использоваться в качестве настраиваемого фильтра, но может также использоваться в качестве настраиваемой системы подавления сигналов, когда компонент в радиочастотном контуре изобретения отличается от линии передачи. Входной сигнал к контуру, содержащему фильтр с дискретным временем, отводится от основного контура с направленным ответвителем от связанного с ним порта. Выходной сигнал этого контура направляется назад на выход основного контура с направленным ответвителем. Третий направленный ответвитель используется для отвода объединенного сигнала для контроля. Направленные ответвители гарантируют низкие потери в основном контуре. В настоящем изобретении радиочастотный компонент представляет собой линию передачи с низким уровнем потерь, малошумящий усилитель или фиксированный дуплексер, а фильтр с дискретным временем - цифровой фильтр.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Примеры воплощения настоящего изобретения со ссылками на сопроводительные чертежи описываются только как возможные варианты изобретения; на чертежах:
Фигура 1 - блок-схема системы известного прототипа,
Фигура 2 - блок-схема системы известного прототипа;
Фигура 3 - блок-схема системы по настоящему изобретению;
Фигура 4 - блок-схема системы по настоящему изобретению;
Фигура 5 - блок-схема системы по настоящему изобретению;
Фигура 6 - блок-схема системы по настоящему изобретению;
Фигура 7 - блок-схема системы по настоящему изобретению;
Фигура 8 - блок-схема системы по настоящему изобретению;
Фигура 9 - блок-схема системы по настоящему изобретению; и
Фигура 10 - блок-схема системы по настоящему изобретению;
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ПРИМЕРОВ ВОПЛОЩЕНИЯ
Настоящее изобретение представляет собой гибрид радиочастотного и основанного на цифровом сигнальном процессоре фильтра для многополосной радио-архитектуры в системе, способной к рефармингу спектра и радиосвязи с программным управлением. Изобретение может выполнить многократную фильтрацию радиочастотных сигналов со скачкообразным изменением частоты настройки там, где на входе фильтра существует большой динамический диапазон между сигналами в полосе задерживания и в полосе пропускания. На выходе передатчика изобретение может использоваться для ослабления пиковых выбросов или помех в пределах полосы со строгим ограничением излучения. На входе приемника изобретение может использоваться для ослабления сигналов блокировки или помех от передатчика.
Настоящее изобретение является реконфигурируемой системой, которая синтезирует и объединяет сигнал подавления с выходом радиочастотного или аналогового компонента. Сигнал подавления синтезируется, используя отвод сигнала от первого ответвителя. Система может работать в диапазоне несущих частот, что означает, что она является системой со скачкообразным изменением частоты настройки. На конкретной несущей частоте система может формировать частотно-зависимые сигналы подавления в пределах пропускной способности системы. Скачкообразное изменение частоты и частотно-зависимое подавление - две составляющие, которые делают систему реконфигурируемой. Настоящее изобретение может использоваться для расширения фиксированного дуплексера, что уменьшает производственные затраты и время доступа к рынку для расширенного дуплексера, снижая требования по фильтрации к фиксированному дуплексеру. Один расширенный дуплексер будет соответствовать техническим условиям множества клиентов в отличие от известных механически настраиваемых фильтров. Можно использовать известные конфигурации РЧ-фильтров с дискретным временем и прямой связью. Одна известная система трехконтурного радиочастотного фильтра с дискретным временем с прямой связью показана на фигуре 1. Эта конфигурация улучшает изоляцию с помощью дуплексера. На этой фигуре h1 и h2 являются системными блоками, содержащими векторные модуляторы. Символы τ1 и τ2 обозначают фиксированные линии задержки, которые классифицирует эту систему как систему с дискретным временем.
На фигуре 1 система 100 с прямой связью и с дискретным временем имеет два контура или два пути прохождения сигнала, где усилитель мощности передатчика РА 105 обеспечивает входной сигнал для ответвителя 110 через соединительную линию 107. Эта система является дискретной системой, состоящей из компонентов с фиксированной частотой и, следовательно, она не способна к скачкообразному изменению частоты.
В первом контуре направленный ответвитель 110 соединен с разделителем 129 через соединение 125. Разделитель обеспечивает два пути прохождения сигнала, которые включают соединение с первым элементом задержки τ1 136 через соединение 134. Первый элемент задержки τ1 136 соединен с радиочастотным компонентом h1 142 через соединение 139, в котором фаза и амплитуда сигнала регулируются. Во втором контуре разделитель связан со вторым элементом задержки τ2 135 через соединение 131. Второй элемент задержки τ2 135 соединен с радиочастотным компонентом h2 141 через соединение 137, где фаза и амплитуда сигнала регулируются. Выход радиочастотного компонента h1 142 и радиочастотного компонента h2 141 соединен с объединителем 150 через соединения 145 и 143, соответственно. Выход ответвителя 150 соединен с направленным ответвителем 121 через соединение 152.
Направленный ответвитель 110 связан во втором контуре с дуплексером 115. Дуплексер 115 соединен с антенной 117, и указанный дуплексер также соединен с направленным ответвителем 121 через соединение 119. Первый и второй пути прохождения сигнала сходятся в направленном объединителе 121, который обеспечивает выходной сигнал для малошумящего усилителя LNA в приемнике 155, соединенным с этой частью фильтра через соединение 154.
Как показано на фигуре 1, известные радиочастотные дискретные фильтры состоят из радиочастотных контуров, содержащих настраиваемые фазовращатели и ступенчатые аттенюаторы или векторные модуляторы. Однако число радиочастотных контуров ограничено двумя или тремя контурами, поскольку каждый дополнительный контур требует дополнительного разделителя, ответвителя, настраиваемого компонента, блока усиления и элемента задержки. Поэтому в системах с известными фильтрами может быть выполнена только фильтрация низшего порядка, используя два или три контура. Необходима двухконтурная система с цепью подавления сигналов, которая выполняет фильтрацию более высокого порядка, не нуждаясь в дополнительных элементах, таких как настраиваемые фазовращатели, ступенчатые аттенюаторы или векторные модуляторы для каждой дополнительной ступени фильтра.
На фигуре 2 представлена система с прямой связью с двумя контурами с цифровым фильтром в одном контуре, который улучшает разделение с помощью дуплексера. На фигуре 2 цифровой входной сигнал устройства 205 поступает на первый и второй пути прохождения сигналов. В первом контуре цифровой сигнал поступает в Фильтр FIR 215 через соединение 210, и с выхода Фильтра FIR 215 сигнал поступает во вспомогательный передатчик 225 через соединение 220. Выход вспомогательного передатчика 225 отправляется направленному блоку сопряжения 265 через соединение 230.
Во втором контуре цифровой сигнал поступает в передатчик 240 через соединение 235. Выход усилителя мощности РА передатчика 240 поступает в дуплексер 255 через соединение 245. Дуплексер 255 соединен с антенной 250, и указанный дуплексер также соединен с направленным ответвителем 265 через соединение 260. Первый и второй пути прохождения сигнала сходятся в направленном объединителе 265, который обеспечивает выходной сигнал для малошумящего усилителя LNA в приемнике 275, связанном с этой схемой фильтра через соединение 270.
Показанная на фигуре 2 система с прямой связью для подавления сигналов включает процессор цифровых сигналов (DSP) в одном контуре системы фильтра и используется для подавления сигнала передачи, который проник в приемник в полосе пропускания. Ввод в систему управления прямого действия является основополосным цифровым сигналом, который также отправляется в основной передатчик. В системе подавления, показанной на фигуре 2 может быть подавлена только линейная часть переданного радиочастотного сигнала. Имеет потребность в системе подавления, которая подавляет не только линейную часть переданного радиочастотного сигнала.
Радиочастотный (или аналоговый) компонент или система в конфигурации с прямой связью по настоящему изобретению соединен с одним контуром, содержащим фильтр с дискретным временем. Эта конфигурация показана на фигуре 3. На пути прохождения сигнала, содержащего фильтр с дискретным временем, используется входной сигнал для синтеза сигнала подавления, который объединен с компонентом радиочастотного (или аналогового) выходного сигнала. Радиочастотный или аналоговый режекторный фильтр (BSF) или фильтр-пробка также помещен на пути прохождения сигнала, содержащего фильтр с дискретным временем, чтобы уменьшить требования к динамическому диапазону фильтра с дискретным временем. Объединенный сигнал контролируется и используется для адаптивно-реконфигурируемого фильтра с дискретным временем и других настраиваемых параметров в том же самом контуре по пути прохождения сигнала.
На фигуре 3 система 300 по настоящему изобретению включает получение входного сигнала RFin 305 (например, от 450 МГц до 3500 МГц) через направленный ответвитель 310. В первом контуре направленный ответвитель 310 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты 320 через соединение 315. РЧ/аналоговый преобразователь 1 с понижением частоты 320 соединен с фильтром с дискретным временем 330 через соединение 325, где входной сигнал, преобразованный с понижением частоты, вводится в фильтр с дискретным временем 330. Фильтр с дискретным временем 330 соединенный с РЧ/аналоговым преобразователем 2 с повышением частоты 340 через соединение 335 и частотно-аналоговый преобразователь 2 с повышением частоты 340 соединены с режекторным фильтром BSF 350 через соединение 345. Режекторный фильтр BSF 350 соединен с направленным ответвителем 365 через соединение 355.
Направленный ответвитель 310 во втором контуре соединен с радиочастотным или аналоговым компонентом 359 через соединение 357. Радиочастотный или аналоговый компонент 359 соединен с направленным ответвителем 365 через соединение 363. Первый и второй пути прохождения сигналов сходятся в направленном объединителе 365, который обеспечивает объединенный сигнал для третьего направленного ответвителя 373 через соединение 370.
Третий направленный ответвитель используется для отвода объединенного сигнала для контроля. В третьем контуре направленный ответвитель 373 соединен с РЧ/аналоговым преобразователем 3 с понижением частоты 380 через соединение 375. Частотно-аналоговый преобразователь 3 с понижением частоты 380 соединен с контроллером 387 фильтра с дискретным временем через соединение 385. Контроллер 387 фильтра с дискретным временем управляет частотно-зависимым подавлением фильтра с дискретным временем 330, с которым он соединен через соединение 390. Направленный ответвитель 373 соединен с выходным сигналом RFout 680 для соединения с остальными компонентами сети.
В изобретении используется конфигурация с прямой связью с двумя контурами или путями прохождения сигнала с фильтром с дискретным временем в одном из контуров. Конфигурация с прямой связью позволяет сигналу полосы пропускания системы пройти через радиочастотный или аналоговый компонент с минимальной потерей в ответвителях. В одном примере воплощения радиочастотный компонент - линия передачи с низким уровнем потерь, на выходе которой основной контур обрабатывает высокую мощность, если сигнал полосы пропускания является сигналом передачи, или с минимальными потерями обрабатывает слабый сигнал, если сигнал полосы пропускания - принимаемый сигнал.
Входной сигнал контура, содержащего фильтр с дискретным временем, отводится от соответствующего порта основного контура с направленным ответвителем. Выходной сигнал этого контура направляется назад на выход основного контура с направленным ответвителем. Третий направленный ответвитель используется для отвода объединенного сигнала для контроля.
Направленные ответвители гарантируют низкие потери в основном контуре. Этот пример воплощения с третьим направленным ответвителем показан на фигурах 3, 4 и 10.
На фигуре 4 система 400 по настоящему изобретению включает получение входного сигнала RFin 405 (например, от 450 МГц до 3500 МГц), связанного с направленным ответвителем 410. В первом контуре направленный ответвитель 410 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты 460 через соединение 455. РЧ/аналоговый преобразователь 1 с понижением частоты 460 соединен с цифровым фильтром 464 через соединение 463, где преобразованный с понижением частоты входной сигнал вводится в цифровой фильтр 464. Цифровой фильтр 464 является цифровым фильтром, связанным с РЧ/аналоговым преобразователем 2 с повышением частоты 470 через соединение 467, и с РЧ/аналоговым преобразователе 2 с повышением частоты 470, связанным с режекторным фильтром BSF 485 через соединение 480. Режекторный фильтр BSF 485 соединен с направленным ответвителем 430 через соединение 490.
Направленный ответвитель 410 связан во втором контуре с элементом задержки Td 420 через соединение 415. Элемент задержки Td 420 соединен с направленным ответвителем 430 через соединение 425. Первый и второй пути прохождения сигнала сходятся в направленном объединителе 430, который обеспечивает объединенный сигнал для третьего направленного ответвителя 440 через соединение 435.
Третий направленный ответвитель используется для отвода объединенного сигнала для контроля. В третьем контуре направленный ответвитель 440 соединен с РЧ/аналоговым преобразователем 3 с понижением частоты 445 через соединение 442. РЧ/аналоговый преобразователь 3 с понижением частоты 445 соединен с цифровым контроллером фильтра 449 через соединение 447. Цифровой контроллер фильтра 449 управляет частотно-зависимым подавлением с помощью фильтра 464, с которым он соединен через соединение 450. Направленный ответвитель 440 соединен с выходным сигналом RFout 495 для соединения с остальными компонентами сети. На фигуре 10 схема изобретения с компонентами идентификации уровня показана более подробно. На фигуре 10 система 1000 по настоящему изобретению включает получение входного сигнала RFin 1105 (например, от 450 МГц до 3500 МГц), связанного с направленным ответвителем 1010. В первом контуре направленный ответвитель 1010 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты через соединение 1012. Соединение 1012 связано с усилителем 1013, который соединен с разделителем 1015 через соединение 1014.
Разделитель 1015 соединен со смесителями 1026 и 1028 преобразователя с понижением частоты через соединения 1016 и 1017, соответственно. Смеситель 1026 преобразователя с понижением частоты соединен с аналоговым фильтром нижних частот 1034 через соединение 1032, и смеситель 1028 преобразователя с понижением частоты соединен с аналоговым фильтром нижних частот 1036 через соединение 1030. Аналоговый фильтр нижних частот 1034 соединен с аналого-цифровым преобразователем 1044 через соединение 1042, и аналоговый фильтр нижних частот 1036 соединен с аналого-цифровым преобразователем 1040 через соединение 1038.
РЧ/аналоговый преобразователь 1 с понижением частоты соединен с цифровым фильтром 1050 в точке, где преобразованный с понижением частоты входной сигнал вводится в цифровой фильтр 1050. Конкретно, аналого-цифровой преобразователь 1044 соединен с цифровым фильтром 1050 через соединение 1046, и аналого-цифровой преобразователь 1040 соединен с цифровым фильтром 1050 через соединение 1048.
Цифровой фильтр 1050 является цифровым фильтром, связанным с РЧ/аналоговым преобразователем 2 с повышением частоты. Конкретно, цифровой фильтр 1050 соединен с РЧ/аналоговым преобразователем 1056 и РЧ/аналоговым преобразователем 1059 через соединения 1051 и 1052, соответственно. РЧ/аналоговый преобразователь 1056 соединен с аналоговым фильтром нижних частот 1062 через соединение 1058, и РЧ/аналоговый преобразователь 1059 соединен с аналоговым фильтром нижних частот 1064 через соединение 1060.
Аналоговый фильтр нижних частот 1062 соединен со смесителем 1068 преобразователя через соединение 1066. Аналоговый фильтр нижних частот 1064 соединен со смесителем 1070 через соединение 1065. Смеситель 1068 преобразователя и смеситель 1070 преобразователя связаны с объединителем 1080 через соединения 1075 и 1078, соответственно. Объединитель 1080 соединен с усилителем 1081 через соединитель 1079, и усилитель 1081 соединен с режекторным фильтром через соединение 1082.
Режекторный фильтр с дискретным временем показан в конфигурации, которая имеет независимо настраиваемую функцию преобразования и полярность. Соединение 1082 связано с компонентом разделителя 1085, который разделяет сигнал на два контура. В первом контуре от разделителя 1085 сигнал 1107 передается в объединитель 1108, который обеспечивает передачу сигнала вдоль линии 1109 к векторному модулятору VM1 1111, который обеспечивает выходной сигнал для разделителя 1101. Разделитель 1101 обеспечивает два сигнала, один по линии 1102 к векторному модулятору VM2 1103.
VM2 1103 обеспечивает выход с элементом задержки τ2 1105 по линии 1104, которая передает выходной сигнал в комбинации с другим входным сигналом от ответвителя 1108 по линии 1106. В другом контуре второй сигнал от разделителя 1101 передается по линии 1100 к объединителю 1089. Во втором контуре от разделителя 1085 второй выходной сигнал 1086 поступает в элемент задержки τ1 1087, который обеспечивает выходной сигнал по линии 1088 к объединителю 1089. Режекторный фильтр T-BSF соединен с направленным ответвителем 1035 через соединение 1090.
Смесители преобразователя связаны с местным гетеродином с частотой fLO, который предоставляет основному сигналу частоту местного гетеродина. Местный гетеродин управляет частотой системы согласно изобретению. Смеситель 1028 преобразователя с понижением частоты и смеситель преобразователя 1070 соединен с fLO через соединения 1020 и 1073 соответственно. Фазовращатель 90° 1022 соединен с fLO через соединение 1021, и фазовращатель 90° 1072 соединен с fLO через соединение 1071. Фазовращатель 1022 90° соединен со смесителем 1026 преобразователя с понижением частоты через соединение 1024, и фазовращатель 90° 1072 соединен со смесителем 1068 преобразователя через соединение 1074.
Направленный ответвитель 1010 соединен со вторым контуром с элементом задержки Td 1020 через соединение 1015. Элемент задержки Td 1020 соединен с направленным ответвителем 1035 через соединение 1025. Первый и второй пути прохождения сигнала сходятся в направленном объединителе 1035, который обеспечивает выходной сигнал для третьего направленного ответвителя 1130.
Третий направленный ответвитель 1130 используется для отвода объединенного сигнала для контроля. В третьем контуре направленный ответвитель 1130 соединен с РЧ/аналоговым преобразователем 3 с понижением частоты через соединение 1135. Соединение 1135 связано с усилителем 1140, который соединен с разделителем 1145 через соединение 1142. Разделитель 1145 соединен со смесителями преобразователя с понижением частоты 1160 и 1165 через соединения 1150 и 1155, соответственно. Смеситель 1160 преобразователя с понижением частоты соединен с аналоговым фильтром нижних частот 1183 через соединение 1178, и смеситель 1165 преобразователя с понижением частоты, соединен с аналоговым фильтром нижних частот 1180 через соединение 1179. Аналоговый фильтр нижних частот 1183 соединен с аналого-цифровым преобразователем 1189 через соединение 1187, и аналоговый фильтр нижних частот 1180 соединен с аналого-цифровым преобразователем 1191 через соединение 1185.
Смесители 1165 и 1160 в РЧ/аналоговом преобразователе 3 с понижением частоты соединены с местным гетеродином fLO, который передает основной сигнал с частотой местного гетеродина в преобразователь с понижением частоты. Смеситель 1165 преобразователя с понижением частоты соединен с fLO через соединение 1171. Фазовращатель 90° 1175 связан с fLO через соединение 1172. Фазовращатель 90° 1175 соединен со смесителем 1160 преобразователя с понижением частоты через соединение 1173. РЧ/аналоговый преобразователь 3 с понижением частоты соединен с процессором алгоритма аналого-цифрового преобразователя 1189 через соединение 1190 и с процессором аналого-цифрового преобразователя 1191 через соединение 1195, где цифровой фильтр 1050 обеспечивается входными и управляющими сигналами. РЧ/аналоговый преобразователь 3 с понижением частоты соединен с цифровым контроллером фильтра, чтобы обеспечить эти управляющие сигналы. Цифровой контроллер фильтра управляет частотно-зависимым подавлением фильтра 1050. Направленный ответвитель 1130 соединен с выходным сигналом RFout для соединения с остальными компонентами сети.
Фильтр с дискретным временем выполняет фильтрацию, необходимую для синтеза сигнала подавления, способного подавить нежелательные компоненты сигнала, присутствующие на пути прохождения основного сигнала. Этот фильтр должен работать только на задерживаемых сигналах, а не сигналах полосы пропускания, следовательно, динамический диапазон сигнала фильтруемого фильтром с дискретным временем, может быть меньше чем динамический диапазон сигнала ввода или вывода в соответствии с настоящим изобретением.
Стадии фильтрации с дискретным временем предшествует стадия преобразования с понижением частоты и сглаживающей фильтрации, и сопровождается стадией восстанавливающей фильтрации и стадией преобразования с повышением частоты. Этап усиления используется до этапа преобразования с понижением частоты, чтобы улучшить характеристику сигнал-шум на пути прохождения сигнала. Этап усиления используется после этапа преобразования с повышением частоты, чтобы гарантировать сигналы подавления по мощности равные сигналам, которые будут подавлены в основном контура.
Фильтр-пробка или режекторный фильтр снижает требования к динамическому диапазону фильтра с дискретным временем. Если такой фильтр установлен после фильтра с дискретным временем, то он может использоваться для снижения шума в полосе пропускания системы. Эта конфигурация выгодна для приемника. Если фильтр-пробка установлен перед фильтром с дискретным временем, то он может использоваться для ослабления сильного сигнала в полосе пропускания системы. Эта конфигурация выгодна для передатчика. В обоих случаях фильтр-пробка уменьшает требования к динамическому диапазону других компонентов пути прохождения сигнала, включая фильтр с дискретным временем.
Схема отрицательной групповой задержки выполняет часть работы по фильтрации фильтра DSP. Оптимизация фильтра DSP показывает, что полоса частот, где желательно подавление, имеет отрицательную групповую задержку частотной характеристики фильтра. При использовании схемы отрицательной групповой задержки цифровой фильтр может работать так же, как если бы у него не было никаких схем отрицательной групповой задержки, но с меньшим количеством ступеней фильтра. Наоборот, если количество ступеней фильтра не сокращено, то отрицательная групповая задержка увеличивается, и фильтр будет иметь больше степеней свободы для оптимизации функции стоимости.
Стадия подачи сигнала в направленный ответвитель и стадия преобразования с понижением частоты расположена после стадии объединения сигнала подавления с основным сигналом контура. Эта подсистема используется, чтобы контролировать выход. Этот контролируемый сигнал обрабатывается и затем используется для управления адаптацией фильтра и любых настраиваемых компонентов в системе. Система имеет большой динамический диапазон, который может использоваться для изменения мощности передачи или для обработки слабых принимаемых сигналов. Фильтр-пробка или режекторный фильтр используется для снижения требований к динамическому диапазону фильтра с дискретным временем, когда существует большой динамический диапазон между полосой пропускания и желательными заграждающими сигналами.
В одном или нескольких примерах воплощения изобретения радиочастотный компонент представляет собой линию передачи с низким уровнем потерь, а фильтр с дискретным временем - цифровой фильтр. Этот пример воплощения показан на фигуре 4 и более подробно на фигуре 5. В этих примерах воплощения изобретение может использоваться в качестве настраиваемого многократного режекторного фильтра или многократного фильтра-пробки. В этом примере воплощения изобретение находится в области настраиваемых фильтров, но если радиочастотный компонент отличается от линии передачи, оно находится в области настраиваемых систем подавления сигналов. До ввода сигнала в малошумящий усилитель изобретение может использоваться для ослабления блокираторов и шума передатчика за пределами полосы пропускания приемника. Эти примерам воплощения показаны на фигурах 5-9. Изобретение может использоваться для улучшения изоляции для узлов с более чем двумя портами. Изобретение может использоваться для подавления шумов передатчика, который проникает через фиксированный дуплексер в приемник в полосе пропускания приемника и передатчика. Изобретение может использоваться для уменьшения линейности компонентов вдоль сигнальной цепи в приемнике. Изобретение может использоваться для подавления мощных сигналов за пределами полосы пропускания системы на выходе любого компонента. Это подавление уменьшит динамический диапазон сигнала, следовательно, снизит требования по линейности для последующих компонентов. На фигуре 5 представлена подробная схема устройства по настоящему изобретению, где основные компоненты описаны более подробно. На фигуре 5 система 500 по настоящему изобретению включает получение входного сигнала RFin 505 (например, от 450 МГц до 3500 МГц), связанного с направленным ответвителем 510. В первом контуре направленный ответвитель 510 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты 535 через соединение 530. Соединение 530 связано с усилителем 537, который соединен с разделителем 540 через соединение 538.
Разделитель 540 соединен со смесителями 543 и 563 преобразователя с понижением частоты через соединения 541 и 560, соответственно. Смеситель преобразователя с понижением частоты 543 соединен с аналоговым фильтром нижних частот 550 через соединение 545, и смеситель преобразователя с понижением частоты 563 соединен с аналоговым фильтром нижних частот 570 через соединение 565. Аналоговый фильтр нижних частот 550 соединен с аналого-цифровым преобразователем 553 через соединение 551, и аналоговый фильтр нижних частот 570 соединен с аналого-цифровым преобразователем 573 через соединение 571.
РЧ/аналоговый преобразователь 1 с понижением частоты 535 соединен с цифровым фильтром 558, где преобразованный с понижением частоты входной сигнал вводится в цифровой фильтр 558. Конкретно, аналого-цифровой преобразователь 553 соединен с цифровым фильтром 558 через соединение 555, и аналого-цифровой преобразователь 573 соединен с цифровым фильтром 558 через соединение 575.
Цифровой фильтр 558 является цифровым фильтром, связанным с РЧ/аналоговым преобразователем 2 с повышением частоты 506. Конкретно, цифровой фильтр 558 соединен с РЧ/аналоговым преобразователем 593 и РЧ/аналоговым преобразователем 595 через соединения 591 и 592, соответственно. РЧ/аналоговый преобразователь 593 соединен с аналоговым фильтром нижних частот 511 через соединение 597, и РЧ/аналоговый преобразователь 595 соединен с аналоговым фильтром нижних частот 512 через соединение 599.
Аналоговый фильтр нижних частот 511 соединен со смесителем 536 преобразователя с повышением частоты через соединение 513. Аналоговый фильтр нижних частот 512 соединен со смесителем 535 преобразователя с повышением частоты через соединение 514. Смеситель 536 преобразователя и смеситель 535 преобразователя связаны с объединителем 523 через соединения 521 и 522, соответственно. Объединитель 523 соединен с усилителем 526 через соединение 524, и усилитель 526 соединен с режекторным фильтром 529 через соединение 528. В основном, РЧ/аналоговый преобразователь 2 с повышением частоты 506 соединен с режекторным фильтром T-BSF 529 через соединение 528. Режекторный фильтр T-BSF 529 соединен с направленным ответвителем 527 через соединение 531. Направленный ответвитель 510 во втором контуре соединен с элементом задержки τ2 520 через соединение 515. Элемент задержки τ2 520 соединен с направленным ответвителем 527 через соединение 525. Первый и второй пути прохождения сигнала сходятся в направленном объединителе 527, который обеспечивает выходной сигнал RFout для остальных компонентов сети.
Смесители преобразователей связаны с местным гетеродином ωр 587, который создает основной сигнал с частотой местного гетеродина для преобразователя с понижением частоты. В системе 500 по настоящему изобретению местный гетеродин управляет скачкообразным изменением частоты. Смеситель 563 преобразователя с понижением частоты и смеситель 535 преобразователя связаны с местным гетеродином ωр через соединения 588 и 589 соответственно. Фазовращатель 90° 583 соединен с ϖр через соединение 588, и фазовращатель 90° 532 соединен с ωр через соединение 589. Фазовращатель 90° 583 соединен со смесителем преобразователя с понижением частоты 543 через соединение 585, и фазовращатель 90° 532 соединен со смесителем 536 преобразователя через соединение 533.
На фигуре 6 система 600 по настоящему изобретению включает получение входного сигнала RFin 605 (например, с частотой от 450 МГц до 3500 МГц), подаваемого в направленный ответвитель 610. В первом контуре направленный ответвитель 610 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты 620 через соединение 615. РЧ/аналоговый преобразователь 1 с понижением частоты 620 соединен с цифровым фильтром 630 через соединение 625, где преобразованный с понижением частоты входной сигнал вводится в цифровой фильтр 630. Цифровой фильтр 630 является фильтром с дискретным временем, связанным с РЧ/аналоговым преобразователем 2 с повышением частоты 640 соединен с элементом 646 отрицательной групповой задержки (NGF) через соединение 645. Режекторный фильтр T-DSF 650 соединен с направленным ответвителем 675 через соединение 655.
Направленный ответвитель 610 на втором пути прохождения сигнала связан с элементом задержки времени τd 665 через соединение 660. Элементом задержки времени τd 665 связан с направленным ответвителем 675 через соединение 670. Первый и второй пути прохождения сигналов сходятся в направленном ответвителе 675, который обеспечивает выходной сигнал RFout 680 к малошумящему усилителю LNA в сети.
На фигуре 7 показана система 700 по настоящему изобретению, которая включает получение входного сигнала RFm 705 (например, от 450 МГц до 3500 МГц), поступающего в направленный ответвитель 710 через линию 707. В первом контуре направленный ответвитель 710 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты 722 через соединение 711. РЧ/аналоговый преобразователь 1 с понижением частоты 722 соединен с цифровым фильтром 726 через соединение 724, где преобразованный с понижением частоты входной сигнал вводится в цифровой фильтр 726. Цифровой фильтр 726 является фильтром с дискретным временем, связанным с РЧ/аналоговым преобразователем 2 с повышением частоты 735 через соединение 728, и РЧ/аналоговый преобразователь 2 с повышением частоты 735 соединен с режекторным фильтром T-BSF 739 через соединение 737. Режекторный фильтр T-BSF 739 соединен с направленным ответвителем 720 через соединение 741.
Во втором контуре направленный ответвитель 710 соединен с линейным малошумящим усилителем LNA 715 через соединение 712. Линейный малошумящий усилитель LNA 715 соединен с направленным ответвителем 720 через соединение 717. Первый и второй пути прохождения сигнала сходятся в направленном ответвителе 720, который обеспечивает выходной сигнал RFout 745 к преобразователю с понижением частоты, связанному с этой цепью фильтра. В этом примере воплощения подавление помех выполняется до смесителя-преобразователя с понижением частоты.
На фигуре 8 показана система 700 по настоящему изобретению, которая включает получение входного сигнала RFin 805 (например, от 450 МГц до 3500 МГц) связанного с направленным ответвителем 810. В первом контуре направленный ответвитель 810 соединен с режекторным фильтром T-BSF 820 через соединение 815. Режекторный фильтр T-BSF 820 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты 830 через соединение 825. РЧ/аналоговый преобразователь 1 с понижением частоты 830 соединен с цифровым фильтром 840 через соединение 835, где преобразованный с понижением частоты входной сигнал вводится в цифровой фильтр 840. Цифровой фильтр 840 является фильтром с дискретным временем, связанным с РЧ/аналоговым преобразователем 2 с повышением частоты 850 через соединение 845, и РЧ/аналоговый преобразователь 2 с повышением частоты 850 соединен с направленным ответвителем 875 через соединение 855.
Во втором контуре направленный ответвитель 810 соединен с элементом задержки Td 865 через соединение 860. Элемент задержки τd 865 соединен с направленным ответвителем 875 через соединение 870. Первый и второй пути прохождения сигналов сходятся в направленном ответвителе 875, который обеспечивает выходной сигнал RFout 880 для схемы дуплексера, связанного с этой цепью фильтра. В этом примере воплощения подавление помех выполняется после передатчика, чтобы выполнить многократное подавление на выходном сигнале и избежать нарушения диаграммы направленности, а также удалить шумы передатчика в полосе пропускания приемника.
На фигуре 9 система 900 по настоящему изобретению включает получение входного сигнала RFin 905 (например, от 450 МГц до 3500 МГц), который подается в направленный ответвитель 910. В первом контуре направленный ответвитель 910 соединен с режекторным фильтром T-BSF 920 через соединение 915. Режекторный фильтр T-BSF 920 соединен с РЧ/аналоговым преобразователем 1 с понижением частоты 930 через соединение 925. РЧ/аналоговый преобразователь 1 с понижением частоты 930 соединен с цифровым фильтром 940 через соединение 935, где преобразованные с понижением частоты сигналы в цифровой фильтр 940. Цифровой фильтр 940 является фильтром с дискретным временем, связанным с РЧ/аналоговым преобразователем 2 с повышением частоты 950 через соединение 945, и РЧ/аналоговый преобразователь 2 с повышением частоты 950 соединен с направленным ответвителем 980 через соединение 955.
Во втором контуре направленный ответвитель 910 соединен с дуплексером 970 через соединение 960. Дуплексер 970 соединен с антенной 971 и с направленным ответвителем 980 через соединение 975. Первый и второй пути прохождения сигналов сходятся в направленном объединителе 980, который обеспечивает выходной сигнал RFout 985 к малошумящему усилителю LNA, связанному с этой цепью фильтра. В этом примере воплощения подавление помех передатчика выполняется, чтобы улучшить разделение сигналов в цепи фиксированного дуплексера.
Настоящее изобретение предлагает гибридную обработку радиочастотных цифровых сигналов на основе РЧ-фильтра и системы подавления сигналов для использования в системе многополосной беспроводной связи, при этом система, способна к рефармингу спектра и обеспечивает радиосвязь с программным управлением. Настоящее изобретение может использоваться для расширения фиксированного дуплексера, что снижает производственные затраты и время выхода на рынок для расширенного дуплексера, снижая требования по фильтрации относительно фиксированного дуплексера. Один расширенный дуплексер удовлетворяет требования технических условий многих клиентов в отличие от известных механически настраиваемых фильтров.
Вышеописанные примеры воплощения настоящего изобретения являются только примерными вариантами. Специалисты в данной области могут выполнить изменения, модификации и усовершенствования в конкретных примерах воплощения, не выходя из объема изобретения. В приведенном выше описании описаны многочисленные детали, чтобы обеспечить понимание настоящего изобретения. Однако специалистам в данной области понятно, что настоящее изобретение может быть осуществлено без этих деталей. Хотя изобретение было раскрыто на ограниченном количестве примеров воплощения, специалисты в данной области могут сделать многочисленные модификации и изменения в этих примерах. Предполагается, что приложенная формула изобретения охватывает все такие модификации и изменения, как находящиеся в пределах духа и объема изобретения.
Настоящее изобретение относится к гибридному радиочастотному фильтру для обработки радиочастотных цифровых сигналов в многополосной радиоаппаратуре с программным управлением. Достигаемый технический результат - обеспечение фильтрации низких частот при многократном изменении частоты в радиочастотном диапазоне, где на входе фильтра существует большой динамический диапазон между сигналами в полосе задержания и в полосе пропускания. Устройство частотно-зависимого подавления сигналов содержит два контура или пути прохождения сигналов, соединенных направленными ответвителями, первый контур содержит компонент, такой как элемент задержки или дуплексер, второй контур содержит режекторный фильтр, преобразователь с повышением частоты, преобразователь с понижением частоты, при этом каждый из упомянутых преобразователей содержит один или несколько смесителей, фильтры. 3 н. и 20 з.п. ф-лы, 11 ил.
1. Устройство частотно-зависимого подавления сигналов, содержащее: приемник входных сигналов, соединенный с первым направленным ответвителем, который разделяет входные сигналы на первый путь прохождения сигнала и второй путь прохождения сигнала; первый РЧ/аналоговый преобразователь с понижением частоты, соединенный с первым направленным ответвителем вдоль первого пути прохождения сигнала, при этом первый РЧ/аналоговый преобразователь с понижением частоты имеет один или несколько смесителей преобразователя с понижением частоты, соединенных с первым фильтром и с аналого-цифровым преобразователем, и указанные один или несколько преобразователей с понижением частоты управляются сигналом местного гетеродина; второй фильтр, соединенный с одним или несколькими смесителями преобразователя в первом РЧ/аналоговом преобразователе с понижением частоты через первый фильтр и аналого-цифровой преобразователь в первом РЧ/аналоговом преобразователе с понижением частоты; второй РЧ/аналоговый преобразователь с повышением частоты, соединенный со вторым фильтром, который имеет один или несколько смесителей преобразователя, связанных со вторым фильтром через третий фильтр и цифроаналоговый преобразователь, при этом каждый из указанных одного или нескольких преобразователей управляются сигналом местного гетеродина; режекторный фильтр, соединенный с указанным вторым РЧ/аналоговым преобразователем с повышением частоты, при этом указанный режекторный фильтр передает свой выходной сигнал во второй направленный ответвитель, который также принимает второй сигнал по второму пути прохождения сигнала от первого направленного ответвителя, при этом указанный сигнал от первого направленного ответвителя проходит через компонент до поступления во второй направленный объединитель; сигнальный выход, обеспеченный вторым направленным ответвителем, который включает рекомбинированные сигналы, которые прошли через первый и второй путь прохождения сигнала, причем указанный сигнал из указанного первого пути прохождения сигнала ослабляет сигнал со второго пути прохождения сигнала во втором направленном объединителе.
2. Устройство по п.1, в котором указанный второй фильтр представляет собой реконфигурируемый фильтр с дискретным временем.
3. Устройство по п.1, в котором указанный режекторный фильтр представляет собой фильтр-пробку.
4. Устройство по п.3, в котором указанный фильтр-пробка является настраиваемым фильтром.
5. Устройство по п.1, в котором указанный фильтр - программируемый цифровой фильтр.
6. Устройство по п.1, в котором преобразователи с понижением частоты представляют собой устройства со скачкообразным изменением частоты.
7. Устройство по п.1, в котором преобразователи с повышением частоты представляет собой устройства со скачкообразным изменением частоты.
8. Устройство по п.1, дополнительно включающее схему, которая демонстрирует отрицательную групповую задержку на частотах, где требуется подавление, при этом указанная схема расположена в первом контуре.
9. Устройство по п.1, в котором указанный режекторный фильтр является настраиваемым фильтром.
10. Устройство частотно-зависимого подавления сигналов, содержащее: приемник входных сигналов, соединенный с первым направленным ответвителем, который разделяет входные сигналы на первый путь прохождения сигнала и второй путь прохождения сигнала; первый РЧ/аналоговый преобразователь с понижением частоты, соединенный с первым направленным ответвителем вдоль первого пути прохождения сигнала режекторный фильтр, соединенный с первым путем прохождения сигнала, при этом первый РЧ/аналоговый преобразователь с понижением частоты имеет один или несколько смесителей преобразователя с понижением частоты, соединенных с первым фильтром, и аналого-цифровой преобразователь, и указанные один или несколько преобразователей с понижением частоты управляются сигналом местного гетеродина; второй фильтр, соединенный с одним или несколькими смесителями преобразователя с понижением частоты в первом РЧ/аналоговом преобразователе с понижением частоты через первый фильтр и аналого-цифровой преобразователь в первом РЧ/аналоговом преобразователе с понижением частоты; второй РЧ/аналоговый преобразователь с повышением частоты, соединенный со вторым фильтром, который имеет один или несколько смесителей преобразователя, связанных со вторым фильтром через третий фильтр и цифроаналоговый преобразователь, при этом каждый из указанных одного или нескольких преобразователей управляются сигналом местного гетеродина, режекторный фильтр, соединенный со вторым РЧ/аналоговым преобразователем, при этом указанный режекторный фильтр передает свой выходной сигнал во второй направленный ответвитель, который также принимает второй сигнал по второму пути прохождения сигнала от первого направленного ответвителя, при этом указанный сигнал от первого направленного ответвителя проходит через компонент элемента до поступления во второй направленный объединитель, причем второй направленный ответвитель обеспечивает выходной сигнал, который включает рекомбинированный сигнал, который прошел по первому и второму пути прохождения сигнала, и третий направленный ответвитель, соединенный со вторым направленным ответвителем, который обеспечивает сигнал для третьего РЧ/аналогового преобразователя 3 с понижением частоты, при этом указанный преобразователь с понижением частоты обеспечивает сигнал для контроллера, который выдает управляющий сигнал обратной связи в фильтр.
11. Устройство по п.10, в котором указанный второй фильтр представляет собой реконфигурируемый фильтр с дискретным временем.
12. Устройство по п.10, в котором указанный режекторный фильтр представляет собой фильтр-пробку.
13. Устройство по п.12, в котором указанный фильтр-пробка является настраиваемым фильтром.
14. Устройство по п.10, в котором указанный второй фильтр - программируемый цифровой фильтр.
15. Устройство по п.10, в котором преобразователи с понижением частоты представляют собой устройства со скачкообразным изменением частоты.
16. Устройство по п.10, в котором преобразователи с повышением частоты представляет собой устройства со скачкообразным изменением частоты.
17. Устройство по п.10, дополнительно содержащее схему, которая демонстрирует отрицательную групповую задержку по частотам, где требуется подавление сигнала, и расположено в первом контуре.
18. Устройство по п.10, в котором указанный режекторный фильтр является настраиваемым фильтром.
19. Способ частотно-зависимого подавления сигналов, содержащий следующие стадии: получение входного сигнала в первом направленном ответвителе, разделение входного сигнала по первому пути прохождения сигнала и по второму пути прохождения сигнала; прием сигнала, проходящего по первому пути, на входе первым РЧ/аналоговым преобразователем с понижением частоты, соединенным с первым направленным разветвителем, при этом первый РЧ/аналоговый преобразователь с понижением частоты обрабатывает принятый сигнал с помощью одного или нескольких аналого-цифровых преобразователей, одного или нескольких смесителей преобразователя с понижением частоты и первого фильтра, обеспечивая передачу выходного сигнала от первого РЧ/аналогового преобразователя с понижением частоты во второй фильтр, который обрабатывает и фильтрует сигнал, полученный по первому пути прохождения сигнала; прием выхода второго фильтра во втором РЧ/аналоговом преобразователе с повышением частоты, который обрабатывает сигнал в одном или нескольких цифроаналоговых преобразователях, в одном или нескольких смесителях преобразователя, и третий фильтр, обеспечивающий передачу сигнала от второго РЧ/аналогового преобразователя с повышением частоты в режекторный фильтр, и передачу сигнала от режекторного фильтра во второй направленный ответвитель; объединение во втором направленном ответвителе выхода режекторного фильтра с сигналом от первого направленного ответвителя, который проходит через компонент прежде, чем он поступит на вход второго направленного ответвителя, при этом указанный объединенный сигнал, полученный на выходе второго направленного ответвителя, является указанным сигналом от указанного первого пути прохождения, ослабленным сигналом от указанного второго пути прохождения сигнала.
20. Способ по п.19, дополнительно содержащий следующие стадии: передачу объединенного сигнала, полученного на выходе второго направленного ответвителя в третий направленный ответвитель, который обеспечивает сигнал для третьего РЧ/аналогового преобразователя с понижением частоты, и передачу сигнала обратной связи от третьего РЧ/аналогового преобразователя с понижением частоты контроллеру, который обеспечивает управляющий сигнал обратной связи для второго фильтра.
21. Способ по п.20, дополнительно содержащий стадию обеспечения выходного сигнала из третьего направленного ответвителя.
22. Способ по п.19, в котором указанный второй фильтр - реконфигурируемый фильтр с дискретным временем.
23. Способ по п.19, в котором указанный второй фильтр - программируемый цифровой фильтр.
WO 2007149957 А1, 27.12.2007 | |||
СПОСОБЫ И УСТРОЙСТВА ДЛЯ ПЕРЕДАЧИ И ПРИЕМА ИНФОРМАЦИИ | 2000 |
|
RU2282944C2 |
УСТРОЙСТВО И СПОСОБ ОБРАБОТКИ СИГНАЛОВ | 1992 |
|
RU2144211C1 |
Устройство для коммутации электрических машин | 1986 |
|
SU1361655A1 |
Авторы
Даты
2013-09-20—Публикация
2009-11-26—Подача