ОПТИЧЕСКИЙ МОНОКРИСТАЛЛ Российский патент 2013 года по МПК G02B1/02 

Описание патента на изобретение RU2495459C1

Изобретение относится к монокристаллам, а именно к оптическим материалам, прозрачным без окон поглощения от 0,4 до 50,0 мкм.

Основными свойствами монокристаллов, предназначенных, в первую очередь, для изготовления из них методом экструзии фотонно-кристаллических инфракрасных (ИК) - световодов нанокристаллической структуры обладающих такими свойствами, как одномодовый режим работы и с расширенным полем моды, является отсутствие спайности у монокристаллов, радиационная прочность (устойчивость к ультрафиолетовому, видимому и ИК излучениям), прозрачность (спектральное пропускание) в диапазоне от 0,4 до 50,0. Кроме того, для изготовления указанных световодов необходимы монокристаллы с различными показателями преломления, т.е. переменного химического состава с воспроизводимыми и прогнозируемыми свойствами.

Известен оптический монокристалл на основе твердого раствора AgCl-AgBr, дополнительно содержащий две изовалентные примеси: катионную - одновалентный таллий и анионную - йод. Монокристалл содержит в мас.%:

хлорид серебра - 18,0-22,0;

бромид серебра - 77,5-76,5;

иодид серебра - 0,5-1,5;

иодид одновалентного таллия - 1,0-3,0.

[Патент на изобретение №2288489 РФ. Оптический монокристалл. Жукова Л.В., Жуков В.В., Пилюгин В.П. Заявл. 13.05.2005; опубл. 27.11.2006. Бюл. №33]. Но эти монокристаллы не обладают нужным химическим составом, т.е. требуемыми показателями преломления, которые необходимы для вновь создаваемых одномодовых и с расширенным полем моды ИК - световодов. Кроме того, кристаллы таких составов мене устойчивы к радиационному, ультрафиолетовому, видимому и ИК излучениям, чем требуется для практического применения.

Наиболее близким техническим решением является оптический монокристалл, включающий твердый раствор на основе бромида серебра и йодида одновалентного таллия, отличающийся тем, что он содержит бромид серебра, йодид одновалентного таллия при следующем соотношении ингредиентов, мас.%:

бромид серебра 99,5-90,0 йодид одновалентного таллия 0,5-10,0.

[Патент на изобретение №2413253 РФ. Оптический монокристалл. Корсаков А.С., Гребнева А.А., Жукова Л.В., Чазов А.И., Булатов Н.К. Заявл. 24.02.2009; опубл. 27.02.2011. Бюл. №6]. Но монокристаллы указанного химического состава также не удается стабильно получать с воспроизводимыми свойствами, а именно повышенной устойчивостью к ультрафиолетовому, видимому, инфракрасному и радиационному излучениям и требуемыми показателями преломления. Кроме того, монокристаллы прозрачны только до 45 мкм.

Задачей изобретения является создание монокристаллов оптимального химического состава на основе бромида серебра и твердого раствора TlBr0.46I0.54 с воспроизводимыми стабильными и прогнозируемыми свойствами, не обладающих эффектом спайности. Кристаллы имеют показатель преломления от 2,209 до 2,305 на длине излучения CO2 лазера (λ=10,6 мкм) и прозрачны в спектральном диапазоне от 0,4 до 50,0 мкм, а также по сравнению с прототипом устойчивы от 5 до 10 раз в, зависимости от химического состава, к радиационному, ультрафиолетовому, видимому и ИК-излучению.

Поставленная задача решается за счет того, что оптический монокристалл на основе бромида серебра дополнительно содержит твердый раствор бромида и йодида одновалентного таллия (TlBr0.46I0.54) при следующем соотношении компонентов в мас.%:

бромид серебра - 99,5-65,0; твердый раствор TlBr0.46I0.54 - 0,5-35,0.

Новые монокристаллы обладают следующими преимуществами:

1. При помощи специальных технологий монокристаллы изготавливают оптимальных химических составов, поэтому они обладают воспроизводимыми и задаваемыми (прогнозируемыми) функциональными свойствами.

2. Показатель преломления монокристаллов в зависимости от химического состава имеет величину от 2,209 до 2,305 для работы на длине волны 10,6 мкм, по сравнению с прототипом от 2,203 до 2,24.

3. Повышена по отношению к прототипу устойчивость в 5-10 раз к радиационному, ультрафиолетовому, видимому и ИК-излучениям в зависимости от состава кристалла, т.е. оптические свойства монокристаллов не изменяются при прохождении электромагнитного излучения.

4. Расширен диапазон прозрачности в дальнюю инфракрасную область спектра до 50 мкм (в прототипе до 45 мкм).

Сущность изобретения состоит в том, что создан новый оптический монокристалл на основе AgBr, имеющего кубическую модификацию, и твердого раствора бромида и йодида одновалентного таллия (TlBr0.46I0.54), имеющего также кубическую модификацию. В связи с этим возможно ввести твердый раствор TlBr0.46I0.54 до 35 мас.% в кристаллическую решетку AgBr, против, как в прототипе, только до 10 мас.% йодида одновалентного таллия, т.к. TlI имеет ромбическую модификацию. За счет присутствия в монокристалле радиационно-стойких и тяжелых по молекулярной массе твердых растворов на основе галогенидов одновалентного таллия (TlBr0.46I0.54) повышается устойчивость к ультрафиолетовому, видимому, инфракрасному и радиационному излучениям, расширяется в длинноволновую область диапазон прозрачности кристаллов до 50 мкм, повышается их показатель преломления до 2,305 (см. пример 1). Разработанные монокристаллы предназначены для работы в спектральном диапазоне от 0,4 до 50,0 мкм.

При уменьшении содержания твердого раствора на основе галогенидов одновалентного таллия в бромиде серебра менее 0,5% по массе (см. пример 4) ограничивается диапазон прозрачности, понижается показатель преломления, кроме того кристалл становится менее устойчивым к ультрафиолетовому, видимому, инфракрасному и радиационному излучению. В случае увеличения содержания твердого раствора (TlBr0.46I0.54) в бромиде серебра более 40% по массе (см. пример 5) кристалл вырастает блочным и распадается по границам блоков.

Пример 1.

Вырастили монокристалл по методу Бриджмена с аксиальной вибрацией расплава. Он содержит в мас.%:

бромид серебра - 65,0; твердый раствор TlBr0.46I0.54 - 35,0.

Монокристалл оптически обработали и измерили показатель преломления, который имел величину 2,305 на длине волны 10,6 мкм. Он прозрачен от видимой до дальней ИК области спектра, т.е. от 0,4 до 50,0 мкм. Оптические свойства монокристалла не изменяются при прохождении через него ультрафиолетового, видимого, ПК и радиационного излучений мощностью, в десять раз большей по отношению к прототипу.

Пример 2.

Вырастили монокристалл состава в мас.%:

бромид серебра - 99,5; твердый раствор TlBr0.46I0.54 - 0,5.

Монокристалл оптически обработали и измерили следующие характеристики:

1. Показатель преломления: 2,209.

2. Спектральное пропускание: от 0,4 до 50,0 мкм.

Оптические свойства монокристалла не изменяются под действием указанных в примере 1 излучений мощностью, в 5 раз большей по отношению к прототипу.

Пример 3.

Вырастили монокристалл состава в мас.%:

бромид серебра - 80,0; твердый раствор TlBr0.46I0.54 - 20,0.

Измерены оптические характеристики, указанные в примере 1:

1. Показатель преломления: 2,255.

2. Спектральное пропускание: от 0,4 до 50,0 мкм.

Под действием видимого, ультрафиолетового, инфракрасного и радиационного излучений мощностью, в 7 раз большей по отношению к прототипу, оптические свойства монокристалла не изменяются.

Пример 4.

Методом Бриджмена с аксиальной вибрацией расплава вырастили монокристалл, содержащий в мас.%:

бромид серебра - 99,8; твердый раствор TlBr0.46I0.54 - 0,2.

Кристалл оптически обработали и измерили: показатель преломления составил 2,03; диапазон прозрачности - от 0,4 до 35,0 мкм. Кристалл устойчив к инфракрасному излучению, но под действием ультрафиолетового, видимого и радиационного излучений разлагается с выделением серебра и окисных соединений серебра.

Пример 5.

Методом Бриджмена вырастили монокристалл, содержащий в мас.%:

бромид серебра - 60,0; твердый раствор TlBr0.46I0.54 - 40,0.

Кристалл вырос блочным и распадается по границам блоков.

Технический результат позволяет получать оптические монокристаллы на основе бромида серебра и твердых растворов (TlBr0.46I0.54) определенного состава, имеющих показатель преломления от 2,209 до 2,305. Монокристаллы прозрачны от видимой до дальней ПК-области спектра (от 0,4 до 50,0 мкм). Они необходимы для получения методом экструзии фотонно-кристаллических ИК-световодов (одномодовых и с расширенным диаметром поля моды) для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные свойства.

Похожие патенты RU2495459C1

название год авторы номер документа
ОПТИЧЕСКИЙ МОНОКРИСТАЛЛ 2009
  • Корсаков Александр Сергеевич
  • Гребнева Анна Александровна
  • Жукова Лия Васильевна
  • Чазов Андрей Игоревич
  • Булатов Назар Константинович
RU2413253C2
Терагерцовая кристаллическая керамика системы TlBrI -AgI 2022
  • Жукова Лия Васильевна
  • Салимгареев Дмитрий Дарисович
  • Львов Александр Евгеньевич
  • Южакова Анастасия Алексеевна
  • Корсаков Александр Сергеевич
  • Белоусов Дмитрий Андреевич
RU2786691C1
ОДНОМОДОВЫЙ ДВУХСЛОЙНЫЙ КРИСТАЛЛИЧЕСКИЙ ИНФРАКРАСНЫЙ СВЕТОВОД 2012
  • Корсаков Александр Сергеевич
  • Жукова Лия Васильевна
  • Кортов Сергей Всеволодович
  • Врублевский Дмитрий Станиславович
RU2504806C1
Способ выращивания инфракрасных монокристаллов на основе твердых растворов системы TlBrI - AgCl (варианты) 2023
  • Жукова Лия Васильевна
  • Кондрашин Владислав Максимович
  • Южакова Анастасия Алексеевна
  • Южаков Иван Владимирович
  • Львов Александр Евгеньевич
  • Корсаков Александр Сергеевич
  • Пестерева Полина Владимировна
RU2821184C1
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ ГАЛОГЕНИДОВ СЕРЕБРА И ТАЛЛИЯ (I) 2017
  • Корсаков Виктор Сергеевич
  • Львов Александр Евгеньевич
  • Корсаков Александр Сергеевич
  • Салимгареев Дмитрий Дарисович
  • Корсаков Михаил Сергеевич
  • Жукова Лия Васильевна
RU2668247C1
Терагерцовый кристалл системы TlBr I - AgI 2022
  • Жукова Лия Васильевна
  • Салимгареев Дмитрий Дарисович
  • Львов Александр Евгеньевич
  • Южакова Анастасия Алексеевна
  • Корсаков Александр Сергеевич
  • Кондрашин Владислав Максимович
  • Пестерева Полина Владимировна
  • Южаков Иван Владимирович
RU2790541C1
Кристаллический сцинтиллятор 2023
  • Пестерева Полина Владимировна
  • Жукова Лия Васильевна
  • Южаков Иван Владимирович
  • Львов Александр Евгеньевич
  • Корсаков Александр Сергеевич
RU2817187C1
Кристаллический сцинтиллятор 2023
  • Пестерева Полина Владимировна
  • Жукова Лия Васильевна
  • Южакова Анастасия Алексеевна
  • Львов Александр Евгеньевич
  • Корсаков Александр Сергеевич
RU2820045C1
ИНФРАКРАСНЫЙ СВЕТОВОД С БОЛЬШИМ ДИАМЕТРОМ ПОЛЯ МОДЫ 2018
  • Жукова Лия Васильевна
  • Корсаков Александр Сергеевич
  • Корсаков Виктор Сергеевич
  • Львов Александр Евгеньевич
  • Лашова Анастасия Алексеевна
RU2682603C1
Терагерцовая нанокристаллическая керамика 2022
  • Жукова Лия Васильевна
  • Салимгареев Дмитрий Дарисович
  • Южакова Анастасия Алексеевна
  • Кондрашин Владислав Максимович
  • Львов Александр Евгеньевич
  • Корсаков Александр Сергеевич
RU2779713C1

Реферат патента 2013 года ОПТИЧЕСКИЙ МОНОКРИСТАЛЛ

Монокристаллы предназначены для ИК-техники и для изготовления из них методом экструзии одно- и многомодовых ИК-световодов для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные свойства. Монокристалл изготовлен на основе бромида серебра и твердого раствора бромида и йодида одновалентного таллия (TlBr0.46I0.54) при следующем соотношении компонентов в мас.%: бромид серебра - 99,5-65,0; твердый раствор TlBr0.46I0.54-0,5-35,0. Технический результат - воспроизводимость и прогнозируемость свойств, отсутствие эффекта спайности, устойчивость к радиационному, ультрафиолетовому, видимому и ИК-излучению.

Формула изобретения RU 2 495 459 C1

Оптический монокристалл, включающий в качестве основы бромид серебра, отличающийся тем, что он дополнительно содержит твердый раствор бромида - йодида одновалентного таллия (TlBr0.46I0.54) при следующем соотношении компонентов, мас.%:
бромид серебра 99,5-65,0 твердый раствор (TlBr0.46I0.54) 0,5-35,0

Документы, цитированные в отчете о поиске Патент 2013 года RU2495459C1

ОПТИЧЕСКИЙ МОНОКРИСТАЛЛ 2009
  • Корсаков Александр Сергеевич
  • Гребнева Анна Александровна
  • Жукова Лия Васильевна
  • Чазов Андрей Игоревич
  • Булатов Назар Константинович
RU2413253C2
ОДНОМОДОВЫЙ ДВУХСЛОЙНЫЙ КРИСТАЛЛИЧЕСКИЙ ИНФРАКРАСНЫЙ СВЕТОВОД 2009
  • Чазов Андрей Игоревич
  • Жукова Лия Васильевна
  • Корсаков Александр Сергеевич
  • Жуков Владислав Васильевич
RU2413257C2
ОПТИЧЕСКИЙ МОНОКРИСТАЛЛ 2005
  • Жукова Лия Васильевна
  • Жуков Владислав Васильевич
  • Пилюгин Виталий Прокофьевич
RU2288489C1
RU 2173867 C1, 20.09.2001
US 20030205064 A1, 06.11.2003.

RU 2 495 459 C1

Авторы

Корсаков Александр Сергеевич

Жукова Лия Васильевна

Терлыга Надежда Геннадьевна

Корсакова Елена Анатольевна

Корсаков Виктор Сергеевич

Даты

2013-10-10Публикация

2012-05-11Подача