УСТРОЙСТВО И СПОСОБ ДЛЯ ВЫСОКОЧАСТОТНОГО НАГРЕВА ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ Российский патент 2013 года по МПК H05B6/54 

Описание патента на изобретение RU2497315C2

Настоящее изобретение относится к нагреву диэлектрической жидкости или ожиженных частиц или частиц жидкости и, в частности к нагреву водонефтяной эмульсии или дисперсии для облегчения ее сепарирования.

При добыче сырой нефти почти образуются водонефтяные эмульсии, которые с наибольшей вероятностью образуются при заводнении скважин для максимизации извлечения нефти из нефтяной скважины.

Перед подачей нефти на перегонку желательно снизить содержание воды в эмульсии до менее 0,5%. Для нефти высшего качества требуется еще более низкое содержание воды, не более 0,2%. Традиционно для сепарирования водонефтяной эмульсии или дисперсии используют отстойники, возможно использующие по меньшей мере поверхностно активные вещества и/или электрические осадители, но этот процесс требует больших затрат времени и не позволяет максимально извлекать нефть.

Электростатическое осаждение, которое заставляет капли воды коалесцировать, известно, например, из патента Великобритании 1155784, в котором раскрывается электростатическое осаждение воды, взвешенной в нефти, в присутствии синтетических термопластических полимеров, действующих в качестве коагуляторов, и в котором жидкость течет через электрическое поле напряженностью 1-60 кВ.

В патенте Великобритании 1247500 раскрыто устройство для обработки водонефтяных эмульсий, содержащих газ, которое осуществляет электрическую обработку эмульсий для удаления воды из направленного вверх потока. Можно использовать вертикально расположенные экранирующие электроды, при этом между соседними парами высоковольтных электродов расположены заземленные электроды.

В патенте Великобритании 1327991 раскрыт фазовый сепаратор для несмешиваемых жидкостей, содержащий выходную зону сепарации, содержащую электроды, на которые подается электроэнергия для создания электрического поля, которое усиливает коагуляцию остаточной воды. Питание на электроды подается от трансформатора, поэтому, очевидно, используется переменное поле или пульсирующее поле. Электроды отстоят друг от друга на 4-10 дюймов (10,2-25,4 см) и на них подается напряжение 0-30 кВ.

В Европейском патенте 0468954 раскрыто расщепление эмульсия воды в нефти или нефти в воде воздействием электрического поля постоянного напряжения для поляризации эмульсии, и переменного поля, наложенного на поле постоянного напряжения.

В патенте США 4257895 раскрыто сепарирование воды и нефти в эмульсии, протекающей вертикально через электрическое поле между двумя пластинчатыми электродами.

В патенте США 5580464 раскрыто сепарирование, например, эмульсии воды в нефти путем введения пузырьков электроизолирующего газа и приложение к эмульсии электрического или электростатического поля, используя изолированные электроды. Представлены ссылки на ранее известные способы создания градиента высокого напряжения, полей переменного тока, пульсирующих полей переменного тока, полей постоянного тока и пульсирующих полей постоянного тока. Электрическое или электростатическое поле создается с использованием одной или более пары электродов, на которые подается напряжение 10-20 кВ с пульсацией 1,5-50 Гц. Эмульсия течет через электрическое поле. Для создания пульсирующего поля постоянного тока используются изолированные электроды, или для создания поля переменного тока используются неизолированные электроды.

В патенте США 5865992 раскрыт сепаратор нефти, воды и газа, использующий электрическое поле, через которое протекает нефть для коагуляции капель воды, захваченной в нефти.

В заявке США 2001/0017264 раскрыт способ сепарирования изолирующей жидкости от диспергированного вещества, в частности воды, диспергированной в нефти, путем создания пульсирующего электрического поля 5-30 кВ частотой от 60 Гц до 1 кГц в зависимости от измеряемой проводимости диспергированного вещества. Перед полем переменной частоты может создаваться пульсирующее поле постоянного тока 0,5-5 кВ для заряда капель воды, а после поля переменной частоты создается сепарирующее поле переменного тока.

В заявке США 2005/0230296 раскрыт водонефтяной сепаратор, содержащий направленный вниз поток водонефтяной эмульсии через электрическое поле для коагуляции захваченных капель воды для ускорения гравитационной сепарации. Направленный вниз поток выводит коагулированные капли воды из электрического поля, предотвращая возникновение высокой концентрации воды, что может привести к короткому замыканию.

Эмульсии с относительно низким содержанием воды, например, менее 25%, требуют больше времени на осаждение по сравнению с эмульсиями с более высокой концентрацией воды, поскольку капельки воды имеют меньший размер и осаждения является балансом между силой тяжести и силами поверхностного натяжения, которые увеличиваются с уменьшением размера капелек.

Если, альтернативно, водонефтяную эмульсию подвергнуть воздействию микроволнового излучения, теплота, возникающая при поглощении излучения каплями воды, может переходить в нефть, снижая вязкость нефти и способствуя сепарированию.

В патенте США 4889636 раскрыто микроволновое сепарирование эмульсии, в частности, для улучшения сепарирования водонефтяной эмульсии с использованием рециркулирующей содержащей нефть воды из бака сепаратора или использованием воды из отдельного источника. Устройство оборудовано впускным и выпускным отверстиями для пропускания водонефтяной эмульсии или дисперсии. В микроволновом циркуляторе между источником микроволнового излучения и волноводом установлены магниты для отклонения отраженной микроволновой энергии в водяную камеру циркулятора.

В патенте США 5914014 раскрыт микроволновый аппликатор для расщепления эмульсий углеводородов и воды. Поток эмульсии углеводородов и воды закачивают в многомодовый микроволновый замкнутый резонатор Двойные противолежащие камеры для потока эмульсии с центральным микроволновым волноводом образуют резонансную камеру с двумя концами с многократным отражением высокочастотной энергии для обработки протекающей эмульсии. Аппликатор высокочастотной энергии отражает энергию в двойные противолежащие оконечные полости, с помощью пластин уголкового отражателя, расположенных на конце прямоугольного волновода. Исходный поток направлен вверх против силы тяжести, чтобы предотвратить накопление захваченных частиц в полостях резонатора. Двойные противолежащие полости работают как одна многомодовая резонансная микроволновая замкнутся полость для поглощения микроволновой энергии. Размеры этой замкнутой полости хорошо согласованы с рисунками микроволновой стоячей волны для заранее определенных диэлектрических свойств смеси воды и нефти, текущей через двойные противолежащие полости. Трехпортовый циркулятор расположен между передатчиком и микроволновым аппликатором для отклонения любой отраженной высокочастотной энергии на охлаждаемую водой поглощающую нагрузку. В патенте США 6044400, 6086830 раскрыты этапы предварительного подогрева, фильтрования, температурный диапазон исходного потока, материалы и конструкции камеры по существу для того же устройства.

В патенте США 6184427 описана утилизация пластмассовых отходов путем обработки отходов микроволнами при пропускании материала через электрическое поле, генерируемое пластинчатым конденсатором или структурой кольцевых электродов.

Согласно первому аспекту настоящего изобретения создано устройство для подачи электромагнитной энергии для нагрева диэлектрической жидкости, содержащее камеру, предназначенную для приема диэлектрической жидкости, по меньшей мере три электрода, разнесенные в одном измерении камеры, и электрический проводник для создания соответствующих высокочастотных электрических полей между соседними электродами так, чтобы формировать по меньшей мере две области высокочастотного электрического поля через указанное измерение камеры.

Для удобства по меньшей мере три электрода предназначены для подачи, по существу, равного количества электромагнитной энергии на единицу объема диэлектрической жидкости между соседними электродами.

Преимущественно, площади и расстояние между соседними парами электродов определяют в зависимости от объема и расхода диэлектрической жидкости между ними так, чтобы между соседними электродами подавалась, по существу, равное количество электромагнитной энергии на единицу объема диэлектрической жидкости.

Для удобства камера имеет по существу круглое сечение.

Для удобства по меньшей мере три электрода выполнены по существу плоскими и по существу взаимно параллельными или по существу цилиндрическими и по существу соосными.

Преимущественно, устройство предназначено для создания по существу одинакового электрического поля между соседними электродами.

Для удобства камера выполнена цилиндрической.

Преимущественно, камера содержит впускное средство и выпускное средство, предназначенные для пропускания диэлектрической жидкости, подвергающейся облучению, при ее прохождении через камеру.

Для удобства устройство предназначено для направления потока диэлектрической жидкости по существу параллельными потоками в одном и том же направлении между соседними электродами.

Для удобства камера является правильным круглым цилиндром.

Преимущественно, устройство содержит генератор высокой частоты для подачи высокочастотной энергии в камеру.

Преимущественно устройство предназначено для облучения эмульсии нефти и воды или дисперсии нефти и воды.

Согласно второму аспекту настоящего изобретения создан способ нагрева диэлектрической жидкости путем подачи электромагнитной энергии, содержащий этапы введения диэлектрической жидкости в камеру, имеющую по меньшей мере три электрода, разнесенные в одном измерении камеры и создание соответствующих высокочастотных электрических полей между соседними электродами так, чтобы образовать по меньшей мере две области поля высокой частоты через указанное измерение камеры.

Для удобства способ содержит подачи, по существу, равного количества высокочастотной электромагнитной энергии на единицу объема диэлектрической жидкости между соседними электродами.

Для удобства эти по меньшей мере три электрода имеют разные вертикальные размеры, разные горизонтальные размеры и, по существу, равную площадь.

Преимущественно, способ содержит создание потока диэлектрической жидкости через впускное средство и выпускное средство камеры для облучения диэлектрической жидкости в камере.

Для удобства способ содержит пропускание диэлектрической жидкости по существу параллельными потоками в одном направлении между соседними электродами.

Преимущественно способ содержит облучение эмульсии воды и нефти или дисперсии воды и нефти.

Далее следует описание варианта настоящего изобретения со ссылками на приложенные чертежи, на которых показано следующее

Фиг.1 - изображает схематический вид в перспективе высокочастотного устройства по настоящему изобретению.

Фиг.2 - вид сбоку устройства по фиг.1.

Фиг.3 - вид сверху варианта устройства по фиг.1, в котором пластины конденсатора включены параллельно.

Фиг.4А - вид с торца устройства по фиг.3.

Фиг.4В - эквивалентная цепь конденсаторов устройства по фиг.3.

Фиг.5 - вид сверху варианта устройства по фиг.1, в котором пластины конденсатора соединены последовательно.

Фиг.5А - вид с торца устройства по фиг.5.

Фиг.5В - эквивалентная цепь конденсаторов устройства по фиг.5.

Фиг.6А - вид в перспективе альтернативного варианта устройства с цилиндрическими электродами.

Фиг.6В - вертикальное поперечное сечение по линии В-В на фиг.6А, где электроды соединены последовательно.

Фиг 6С - вертикальное продольное сечение по линии С-С на фиг.6В.

Фиг.7А - вертикальное поперечное сечение по линии В-В на фиг.6А, где электроды соединены параллельно.

Фиг.7В - вертикальное продольное сечение по линии В-В на фиг.7А.

На всех чертежах одинаковые детали обозначены одними и теми же позициями.

Как показано на фиг.1, высокочастотное устройство 10 по настоящему изобретению содержит правильную цилиндрическую технологическую камеру 20, например, участок трубопровода, по которому обрабатываемая эмульсия может проходить горизонтально, как показано на чертеже, или наклонно относительно горизонтали, или по существу вертикально. В технологической камере расположено множество параллельных вертикальных электродов или пластин 401-411 конденсатора, приходящих по существу от верхней части стенки цилиндра к нижней части стенки цилиндра. Пластины, расположенные ближе к центру камеры, таким образом, имеют больший вертикальный размер, чем пластины расположенные дальше от центра камеры. Для создания одинакового поля в эмульсии, протекающей между любыми из пластин, желательно, чтобы между каждой соседней парой пластин возникала одинаковая емкость. Поскольку емкость прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами, одинаковую емкость можно получить, изменяя либо площадь пластин, или расстояние между пластинами, или комбинацию площади и расстояния. В вариантах, показанных на фиг.1-5, пластины разнесены по существу на одинаковое расстояние и, поскольку высота пластин различна, чтобы их можно было разместить в цилиндрической камере, при этом длины пластин также различны, чтобы все пластины имели по существу одинаковую площадь.

Как показано на фиг.3 и 5, пластины постепенно удлиняются в направлении, параллельном продольной оси цилиндрической камеры, от центральной пластины 406, 506 к внешним пластинам 401, 410, 501, 511.

Диапазон высоких частот может составлять от 30 кГц до 300 ГГц, но предпочтительным диапазоном для настоящего изобретения является диапазон 1 100 МГц. При частоте ниже 1 МГц напряжение, необходимое для водонефтяной эмульсии, может быть слишком высоким. При частоте выше 100 МГц паразитные потери, вызываемые, например, паразитными емкостями и индуктивностями, могут стать слишком большими.

В первом варианте изобретения устройство 10 для нагрева диэлектрической жидкости за счет приложения электромагнитной энергии содержит камеру 20 для диэлектрической жидкости, по меньшей мере, три электрода 301-310, разнесенных друг от друга по одному измерению камеры, и электропроводные средства или шины 41 и 42, электрически соединенные с электродами, прикладывающими соответствующие высокочастотные электрические поля между соседними электродами таким образом, что по такому размеру камеры образуются по меньшей мере две области такого высокочастотного поля. В первом варианте, как показано на фиг.3 и 4А, пластины соединены параллельно, как показано эквивалентной цепью на фиг.4В. Как показано на фиг.4А, в первом варианте чередующиеся пластины 401, 403, 405, 407, 409 электрически соединены первой электрической дугообразной шиной 41, а остальные пластины 402, 404, 406, 410 электрически соединены второй электрической дугообразной шиной 42, расположенной напротив первой электрической дугообразной шины 41.

Первая шина 41 также электрически соединена с соединителем 416, который проходит сквозь стенку камеры 20 через изолятор 415. Аналогично, вторая шина 42 электрически соединена с соединителем 426, который проходит сквозь стенку камеры 20 через изолятор 425. Один набор пластин может быть заземлен или чередующиеся пластины могут возбуждаться по-разному. Если один из наборов пластин заземляется, пластины могут быть соединены с заземленной стенкой камеры, а не с шиной.

На один из соединителей 416, 426 можно подавать высокую частоту, а другой может быть заземлен. Из практических соображений предпочтительно вводить изолирующий слой между возбуждаемой пластиной и стенкой камеры, для предотвращения возникновения электрической дуги. Это приведет к возникновению емкости относительно земли, дополнительной к емкостям, показанным на фиг.4В. как вариант на оба соединителя можно подавать высокую частоту в противофазе. В этом случае обе шины 41, 42 могут быть отделены от камеры изолирующим материалом.

Во втором варианте, показанном на фиг.5 и 5А, устройство 100 для нагрева диэлектрической жидкости за счет приложения электромагнитной энергии содержит камеру 20 для диэлектрической жидкости, по меньшей мере три электрода 501, 506, 511, разнесенных друг от друга по одному размеру камеры, и электропроводное средство или соединитель 516, 526, электрически соединенный электродами, прикладывающими соответствующие высокочастотные электрические поля между соседними электродами, так что по размеру камеры образуются по меньшей мере две области высокочастотных полей. Во втором варианте пластины соединены последовательно, как показано эквивалентной цепью по фиг.5 В. Как показано на фиг.5А, в этом втором варианте центральная пластина 506 соединена с соединителем, который проходит сквозь изолятор 515 в стенке цилиндрической камеры 20, конечные или внешние пластины 501, 511 заземлены через заземляющий соединитель 526, а остальные промежуточные пластины 502-505 и 507-510 являются электрически не подключенными. Альтернативно, центральная пластина 506 и концевые пластины 501, 511 возбуждаются по-разному. Следует понимать, что в этом втором варианте, когда пластины соединены последовательно, требуется более высокое напряжение, чем в вышеописанном первом варианте с параллельными пластинами, чтобы создать такое же электрическое поле между соседними пластинами. Однако в обоих вариантах можно подавать мощность от 100 Вт до 100 кВт.

На фиг.5А, возбуждающее напряжение подается только на соединитель 516, а дополнительные соединители соединены через изолирующие втулки, например, втулку 515, с концевыми пластинами 501, 511. Если напряжение подается на соединитель 516, эти дополнительные соединители могут быть заземлены. Как вариант соединитель 516 может быть заземлен, а на дополнительные соединители может подаваться напряжение в противофазе. Противофазное возбуждение может осуществляться от выходной обмотки трансформатора, центральная обмотка которого может быть заземлена.

Хотя на чертежах показаны прямоугольные пластины, пластины могут иметь гидродинамическую форму для минимизации сопротивления потоку жидкости, текущему через камеру. Альтернативно или дополнительно на пластины можно нанести покрытие, снижающее сопротивление потоку.

Следует понимать, что хотя электроды 401-409 и 501-511 именуются пластинами конденсатора, они могут быть выполнены не как пластины, а как решетки.

Хотя электродные пластины преимущественно расположены вертикально, чтобы капли воды, падающие на дно камеры под действием силы тяжести, не скапливались на пластинах, камера не обязательно должна быть расположена горизонтально, но продольная ось камеры может быть наклонена к горизонтали, или расположена вертикально или по существу вертикально. Если электродные пластины расположены по существу горизонтально, они предпочтительно выполнены в форме решеток, чтобы вода не скапливалась на пластинах, а проходила сквозь решетки.

Можно использовать не правильную цилиндрическую камеру, а камеру, а коническую камеру.

Во время эксплуатации высокочастотный сигнал подается на соединители 416, 426, 516, 526 для генерирования высокочастотного поля между парами соседних пластин. Высокая частота составляет от 30 кГц до 300 ГГц. Как показано на фиг.1, 2, 3 и 5, подвергаемая сепарации эмульсия пропускается через технологическую камеру в направлении, показанном стрелками 31, 32, и проходит между параллельными пластинами 401-409, 501-511. Поле воздействует дифференциально для нагрева капель воды в эмульсии, которые за счет теплопроводности могут нагревать нефть, в результате чего вязкость нефти снижается. Это приводит к увеличению скорости сепарации эмульсии, и вода стремиться погрузиться под нефть. Эмульсию можно направить в отстойник для дальнейшей сепарации эмульсии.

Между камерой и высокочастотным генератором можно установить согласующую цепь для согласования генератора с нагрузкой, чтобы подать на жидкость максимальную мощность. Диэлектрическую постоянную и другие параметры жидкости можно измерять перед камерой, чтобы согласовать прилагаемое поле с нагрузкой излучения.

Как описано выше, в вариантах настоящего изобретения в камере могут располагаться более двух электродов конденсатора. Однако, следует понимать, что устройство может работать и с единственной возбуждаемой пластиной, а два остальные электрода будут формировать прилегающие поверхности камеры.

Для подачи энергии в диэлектрическую жидкость, в частности в водонефтяную эмульсию, требуется некоторый уровень мощности, и расстояние между электродными пластинами определяет, насколько большую мощность можно подать. Дополнительные пластины, в дополнение минимум к двум, позволяют повысить прилагаемую мощность, и распределяют электрическое поле и управляют плотностью мощности в жидкости по мере необходимости. Следовательно, обычно в камере устанавливают более двух пластин.

Камера не обязательно имеет круглое сечение, и пластины не обязательно расположены вертикально. Фактически это не существенно для получения одинакового высокочастотного поля между соседними пластинами, поскольку, например, скорость потока облучаемой жидкости может быть ниже у периферии камеры, что потребует приложения в этой области более слабого поля, чем ближе к центру, чтобы подавать одинаковую мощность на единицу объема диэлектрической жидкости. Однако, хотя можно использовать различные усовершенствованные варианты электродов, показанный вариант с расположенными по краям удлиненными пластинами в настоящее время остается предпочтительным. Площади пластин приблизительно равны, если расход по сечению камеры одинаков.

Кроме того, электродные пластины не обязательно являются параллельными и плоскими. Как показано на фиг.6 и 7, электродные пластины являются соосными пустотелыми цилиндрами. Так, центральная пластина 406 заменена пустотелым цилиндром 606, пластины 405, 407 заменены пустотелыми цилиндрами 607, 608 увеличивающегося диаметра и так далее. Такие соосные цилиндры можно организовать в последовательно включенные конденсаторы, как показано на фиг.6В и 6С или в параллельно включенные конденсаторы, как показано на фиг.7А и 7В, аналогично варианту, показанному на фиг.4 и 5. Для параллельного соединения чередующиеся цилиндры соединяются, например, первым проводом 71, промежуточные цилиндры соединяются вторым проводом 72. Для последовательного соединения возбуждается лишь центральный цилиндр 606. Пустотелые цилиндрические электроды могут возбуждаться в обратном порядке или по-разному так же, как и варианты по фиг.4 и 5.

При необходимости одинаковой площади концентрических цилиндрических пластин для создания между пластинами одинакового поля осевая длина пластин может уменьшаться от внутренней цилиндрической пластины к внешней цилиндрической пластине. Альтернативно или дополнительно одинаковую энергию между пластинами можно подавать, изменяя радиальное расстояние между пластинами, принимая во внимание также различный объем жидкости и, вероятно, различный расход жидкости, облучаемой между разными цилиндрическими пластинами.

Пластины могут иметь изолирующее покрытие для предотвращения образования дуги, если между пластинами соберется вода.

Две или более технологические камеры можно использовать параллельно, так, чтобы камеру можно было вывести из эксплуатации для обслуживания, не прерывая поток жидкости через другие камеры. Любые повреждения электродных пластин можно обнаружить, измеряя изменения импеданса технологической камеры.

Хотя выше было описано устройство для увеличения скорости осаждения эмульсий, состоящих из нефти и воды, следует понимать, что такое устройство может использоваться для нагревания любого протекающего диэлектрического материала.

Следует понимать, что эмульсия, протекающая через камеру, может быть под давлением, существенно превышающим атмосферное, например, 6×106 Па (60 бар), типично применяемое в трубопроводах, ведущих от нефтяных скважин.

Настоящее изобретение основано на диэлектрическом нагреве для сепарации эмульсии. Эмульсия действует как несовершенный диэлектрик между электродами конденсатора, и диэлектрические потери происходят в основном в воде и в очень небольшой степени в нефти. Поскольку мелкие капли воды подвергаются диэлектрическому нагреву, нефть окружающая каждую каплю, нагревается и, в результате вязкость этой окружающей нефти снижается, что позволяет мелким каплям воды осаждаться с увеличенной скоростью.

Похожие патенты RU2497315C2

название год авторы номер документа
Трубный электрокоалесцирующий аппарат 2021
  • Лавров Владимир Владимирович
  • Сучков Евгений Игоревич
  • Вольцов Андрей Александрович
  • Халитов Радик Ильшатович
  • Солоницын Вячеслав Анатольевич
  • Гаус Павел Оскарович
RU2780854C1
АППАРАТ ДЛЯ РАЗРУШЕНИЯ ВОДОНЕФТЯНОЙ ЭМУЛЬСИИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ 1991
  • Гершуни Семен Шикович
  • Доброскок Инна Борисовна
  • Лапига Евгений Яковлевич
  • Черек Алексей Михайлович
RU2020998C1
ЭЛЕКТРОСТАТИЧЕСКИЙ КОАГУЛЯТОР С РЕЗОНАНСНОЙ СХЕМОЙ СЛЕЖЕНИЯ 2009
  • Акдим Мохамед Реда
  • Круидтцер Говерт Л.
  • Анциферов Павел
RU2567251C2
Система и способ электромагнитного фазоразделения водонефтяной эмульсии 2019
  • Богданов Александр Владимирович
  • Перевалова Наталья Ивановна
  • Мигунов Михаил Ильич
  • Тарасевич Сергей Алексеевич
  • Хрущев Виктор Владимирович
  • Грехов Иван Викторович
  • Ковалева Лиана Ароновна
  • Зиннатуллин Расул Рашитович
  • Султангужин Руслан Фуатович
  • Габдрафиков Айдар Фирдависович
RU2710181C1
СПОСОБ И ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ IN SITU ЭЛЕКТРОМАГНИТНЫХ СВОЙСТВ РАЗЛИЧНЫХ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ ХАРАКТЕРИСТИКИ ЧАСТОТЫ ОТСЕЧКИ И АНАЛИЗА 1993
  • Рандэлл Бафорд Джин
  • Линн Ф.Вайтхед
  • Гэри Л.Воррен
RU2115110C1
СПОСОБ МИКРОВОЛНОВОЙ ОБРАБОТКИ ВОДОНЕФТЯНОЙ ЭМУЛЬСИИ, ТРАНСПОРТИРУЕМОЙ ПО ТРУБОПРОВОДУ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Воробьев Николай Германович
  • Аюпов Тимур Анварович
  • Даутов Осман Шакирович
  • Петров Алексей Валентинович
RU2333418C1
СПОСОБ ПОТОЧНОГО ИЗМЕРЕНИЯ ДОЛИ ВОДЫ В СМЕСИ С УГЛЕВОДОРОДНОЙ ЖИДКОСТЬЮ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Царапкин Дмитрий Петрович
  • Сотсков Валерий Анатольевич
  • Павленко Григорий Антонович
RU2569180C1
ЭЛЕКТРОЛИТИЧЕСКАЯ РЕАКЦИОННАЯ СИСТЕМА ДЛЯ ПОЛУЧЕНИЯ ГАЗООБРАЗНЫХ ВОДОРОДА И КИСЛОРОДА 2020
  • Ребров, Олексий
  • Хайдер, Михаэль
  • Азамер, Йоханнес
RU2824538C1
СПОСОБ ОБЕЗВОЖИВАНИЯ ВОДОНЕФТЯНОЙ ЭМУЛЬСИИ 2011
  • Федотов Александр Алексеевич
  • Еремин Анатолий Дмитриевич
  • Шинкарев Алексей Афанасьевич
RU2536583C2
ДИЭЛЕКТРИЧЕСКИЙ РЕЗОНАТОР ДЛЯ Е-ВОЛН И ДИЭЛЕКТРИЧЕСКИЕ ФИЛЬТР И ДУПЛЕКСЕР ДЛЯ Е-ВОЛН, В КОТОРЫХ ИСПОЛЬЗУЕТСЯ ТАКОЙ РЕЗОНАТОР 1997
  • Ехей Исикава
  • Сейдзи Хидака
  • Норифуми Матсуи
  • Томоюки Исе
  • Казухико Кубота
RU2147388C1

Иллюстрации к изобретению RU 2 497 315 C2

Реферат патента 2013 года УСТРОЙСТВО И СПОСОБ ДЛЯ ВЫСОКОЧАСТОТНОГО НАГРЕВА ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ

Изобретение относится к нагреву диэлектрической жидкости или сжиженных частиц или частиц жидкости, и в частности к нагреву водонефтяной эмульсии или дисперсии, для облегчения ее сепарирования. Устройство для подачи электромагнитной энергии к диэлектрической жидкости содержит камеру (20) для диэлектрической жидкости. В камере расположены, по меньшей мере, три параллельных или соосных электродных пластины (401-409) для создания, по существу, одинакового количества электромагнитной энергии на единицу объема диэлектрической жидкости между соседними электродами пластин. Электрические проводники (416, 426) электрически соединены с электродными пластинами для создания высокочастотного электрического поля между соседними электродными пластинами. В первом варианте электроды соединены последовательно, а в альтернативном варианте электроды соединены параллельно. Способ нагрева диэлектрической жидкости содержит введение диэлектрической жидкости в камеру, создание соответствующих высокочастотных электрических полей между соседними электродами так, что через указанное измерение камеры создаются, по меньшей мере, две области высокочастотного поля. Техническим результатом является максимизация извлечения нефти из нефтяной скважины. 2 н. и 18 з.п. ф-лы, 13 ил.

Формула изобретения RU 2 497 315 C2

1. Устройство для подачи электромагнитной энергии для нагрева диэлектрической жидкости, содержащее камеру для диэлектрической жидкости, по меньшей мере три электрода, разнесенные друг от друга в одном измерении камеры, электрический проводник, соединенный с электродами и способный прикладывать соответствующие высокочастотные электрические сигналы к соседним электродам так, что образуются по меньшей мере две области высокочастотного поля по указанному измерению камеры.

2. Устройство по п.1, в котором по меньшей мере три электрода предназначены для подачи, по существу, равного количества электромагнитной энергии на единицу объема диэлектрической жидкости между соседними электродами.

3. Устройство по п.1, в котором площадь и расстояние между соседними парами электродов определены в зависимости от объема и расхода диэлектрической жидкости межу ними так, что между соседними электродами подается, по существу, равное количество электромагнитной энергии на единицу объема диэлектрической жидкости.

4. Устройство по п.1, в котором камера имеет, по существу, круглое поперечное сечение.

5. Устройство по п.1, в котором по меньшей мере три электрода являются, по существу, плоскими и, по существу, взаимно параллельными или, по существу, цилиндрическими и, по существу, соосными.

6. Устройство по п.1, способное создавать, по существу, одинаковое электромагнитное поле между соседними электродами.

7. Устройство по п.1, в котором соседние электроды имеют разные вертикальные размеры, разные горизонтальные размеры и, по существу, одинаковую площадь.

8. Устройство по п.1, в котором камера выполнена цилиндрической.

9. Устройство по п.1, в котором камера содержит впускное средство и выпускное средство, предназначенные для обеспечения облучения диэлектрической жидкости при ее прохождении через камеру.

10. Устройство по п.9, предназначенное для пропускания диэлектрической жидкости, по существу, параллельными потоками в одном направлении между соседними электродами.

11. Устройство по п.1, в котором камера является правильным круглым цилиндром.

12. Устройство по п.1, содержащее высокочастотный генератор для подачи высокочастотной энергии в камеру.

13. Устройство по п.1, предназначенное для облучения эмульсию нефти и воды или дисперсии нефти и воды.

14. Способ нагрева диэлектрической жидкости путем подачи электромагнитной энергии, содержащий следующие этапы:
введение диэлектрической жидкости в камеру, содержащую по меньшей мере три электрода, разнесенные в одном измерении камеры;
создание соответствующих высокочастотных электрических полей между соседними электродами так, что через указанное измерение камеры создаются по меньшей мере две области высокочастотного поля.

15. Способ по п.14, содержащий подачу, по существу, одинакового количества высокочастотной электромагнитной энергии на единицу объема диэлектрической жидкости между соседними электродами.

16. Способ по п.14, в котором для подачи высокочастотной электромагнитной энергии осуществляют создание, по существу, одинаковых высокочастотных электрических полей между соседними электродами.

17. Способ по п.14, при котором по меньшей мере три электрода имеют разные вертикальные размеры, разные горизонтальные размеры и, по существу, одинаковую площадь.

18. Способ по п.14, содержащий пропускание потока диэлектрической жидкости через впускное средство и выпускное средство камеры для облучения диэлектрической жидкости в камере.

19. Способ по п.18, содержащий пропускание диэлектрической жидкости, по существу, параллельными потоками в одном направлении между соседними электродами.

20. Способ по п.14, содержащий облучение эмульсии нефти и воды или дисперсии нефти и воды.

Документы, цитированные в отчете о поиске Патент 2013 года RU2497315C2

Способ повышения активности цемента 1981
  • Юдович Борис Эммануилович
  • Тарнаруцкий Григорий Моисеевич
  • Батутина Любовь Степановна
  • Педан Александр Леонтьевич
  • Филатов Василий Андреевич
  • Василянский Григорий Дмитриевич
SU994450A1
УСТРОЙСТВО ДЛЯ СВЧ-ОБРАБОТКИ ЖИДКИХ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ 1992
  • Сучков С.Г.
  • Хитрин В.С.
  • Давидович М.В.
RU2075839C1
ЭЛЕКТРОДНЫЙ НАГРЕВАТЕЛЬ ЖИДКОСТИ 1998
  • Цыганко О.Л.
  • Струев В.П.
  • Хорьков М.Г.
RU2127029C1
ЭЛЕКТРОДНЫЙ НАГРЕВАТЕЛЬ ЖИДКОСТИ "МЕЧТА 4" 1991
  • Гетманский Дмитрий Иванович
RU2030126C1
Способ опорной пластики нижнего века 1986
  • Мулдашев Эрнст Рифгатович
  • Салихов Амир Юсупович
  • Булатов Ришат Тахаутдинович
SU1524883A1
Экономайзер 0
  • Каблиц Р.К.
SU94A1
GB 13279991 А, 22.08.1973
US 4257895 А1, 24.03.1981
US 5580464 А, 03.12.1996
US 20050230296 А1, 20.04.2004.

RU 2 497 315 C2

Авторы

Пржибила Ян С.

Даты

2013-10-27Публикация

2009-02-10Подача