УСТРОЙСТВО ИЗМЕРЕНИЯ АНИЗОТРОПИИ ПРОСТРАНСТВА СКОРОСТЕЙ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ Российский патент 2013 года по МПК G01B9/02 

Описание патента на изобретение RU2498214C1

Область техники

Изобретение относится к устройствам для ориентации объектов в пространстве на основе измерения анизотропии пространства скоростей электромагнитного излучения в движущейся среде.

Уровень техники

Известны устройства для регистрации и измерения анизотропии пространства. Эти устройства имеют оптическую схему интерферометра, в котором суммируется амплитуда электромагнитных волн, прошедших оптический путь в разных направлениях. Суть этих методов заключается в том, что если анизотропия пространства распространения электромагнитного излучения по-разному влияет на лучи в разных направлениях, то это должно проявляться при повороте интерферометра относительно оси анизотропии.

Известно устройство для измерения анизотропии [1], представляющее собой интерферометр, который размещается на поворотном основании. В нем использованы два лазера, причем излучение одного из них распространяется по трем пространственным координатам. При повороте интерферометра анизотропия пространства приводит к влиянию на распространение излучения вдоль избранного направления. Поэтому наблюдается вариация оптического сигнала, пропорциональная углу наклона оси чувствительности установки к выделенному направлению, которая регистрируется детектором. Такое устройство имеет недостаточные чувствительность и помехозащищенность.

Известно устройство для измерения анизотропии [2], представляющее собой интерферометр, содержащий два мазерных источника когерентного электромагнитного излучения. Выходной сигнал с интерферометра образуется суперпозицией амплитуд электромагнитных волн и зависит от биения частот двух мазеров, расположенных перпендикулярно друг к другу. Интерферометр располагается на поворотном основании. При повороте интерферометра в горизонтальной плоскости при изменении ориентации плеч интерферометра по отношению к направлению анизотропии пространства будут наблюдаться вариации сигнала - периодические биения частот. Данное устройство также имеет недостаточные чувствительность и помехозащищенность.

Известно устройство для измерения анизотропии [3], представляющее собой оптический интерферометр, который располагается на поворотном основании и состоит из когерентного источника излучения, оптической системы, светоделителей, зеркал и фоторегистратора. Луч когерентного светового источника излучения делится на светоделителе на два луча, которые распространяются в перпендикулярных направлениях, отражаются от концевых зеркал и создают интерференционную картину в плоскости ее локализации, т.е. на экране. Изменение ориентации интерферометра в анизотропном пространстве приводит к смещению интерференционных полос, что может быть зарегистрировано фоторегистрирующим детектором. Данное устройство также имеет низкие чувствительность и помехозащищенность.

Наиболее близким к заявляемому является устройство для измерения анизотропии [4], которое представляет собой оптический интерферометр, расположенный на поворотном основании и помещенный в термостабилизированный кожух. Устройство состоит из лазера, оптической системы, светоделителей, зеркал, фотодетекторов, причем интерферометр выполнен по кольцевой схеме, а в плечо интерферометра введен вращающийся оптический диск. Изменение ориентации интерферометра в пространстве приводит к смещению интерференционных полос, что может быть зарегистрировано фоторегистрирующим детектором.

В интерферометре луч от лазера делится светоделителем на два луча, которые распространяются через вращающийся оптический диск (ОД) в противоположных направлениях. Каждый из лучей преломляется на первой плоской поверхности ОД, отражается на второй поверхности, затем преломляется на первой и выходит из диска. Вследствие вращения ОД, один из лучей получает положительный сдвиг фазы, другой -отрицательный. После того как лучи снова встретятся, они регистрируются фотодетектором.

Чувствительность устройства к изменению ориентации в анизотропном пространстве линейно зависит от частоты вращения диска, поэтому частота вращения должна быть достаточно высокой. Также чувствительность зависит от длины оптического пути в материале диска, что накладывает определенные требования к минимальным размерам диска и его показателю преломления.

В случае существования пространственно-временной оптической анизотропии должны наблюдаться вариации в положении интерференционной картины при повороте интерферометра в пространстве, что регистрируется фотодетектором.

Данное устройство имеет недостаточную помехозащищенность, т.к. интерферометр чувствителен к отклонению оси симметрии ОД от оси вращения ОД. Также для достижения высокой чувствительности устройства необходимо увеличивать размеры ОД, что приводит к снижению помехозащищенности.

Раскрытие изобретения

Задачей изобретения является повышение помехозащищенности устройства.

Задача решается за счет того, что ОД выполнен в виде клина, работающего на просвет, а не на отражение, что устраняет влияние отклонения оси симметрии ОД от оси вращения ОД, на плоских поверхностях ОД выполнены отражающие покрытия в виде кольцевых участков, причем внешний радиус отражающих колец меньше внешнего радиуса ОД на величину диаметра светового луча, для того чтобы можно было обеспечить ввод и вывод луча из диска. Диск изготовлен в виде клина определенной угловой величины (в диапазоне 0,5…1,5 угловой секунды для того, чтобы перейти от амплитудных измерений положения интерференционной картины к временным, что приведет к повышению помехозащищенности метода. Устройство снабжено набором фотодетекторов, расположенных в плоскости локализации интерференционной картины таким образом, чтобы увеличить отношение сигнал/шум (фотоэлементы расположены вдоль прямой линии параллельно интерференционной полосе).

Краткое описание чертежей

На фиг.1 изображена схема предлагаемого устройства измерения анизотропии пространства скоростей электромагнитного излучения.

На фиг.2 изображены оптический диск и схема прохождения луча

Осуществление изобретения

Работает устройство следующим образом (фиг.1).

Луч от стабилизированного лазера 1 проходит оптическую систему 2, делится светоделительной пластинкой 3 на два луча, которые, отразившись от зеркал 4 и 5, распространяются через вращающийся ОД 6. Вследствие вращения, один из лучей получает положительный сдвиг фазы, другой - отрицательный. После того как лучи снова встретятся на 3 и отразятся зеркалом 7, они проходят оптическую систему 8 и регистрируются фотодетектором 9. Светоделительная пластинка 10 и фотодетектор 11 нужны для контроля мощности лазера.

Свет переотражается на плоских поверхностях оптического диска (фиг.2), выполненного в виде оптического клина с углом клиновидности около 1 угловой секунды, на плоских поверхностях ОД нанесены отражающие покрытия в виде кольцевых участков. Внешний радиус отражающих кольцевых участков должен быть меньше внешнего радиуса ОД на величину диаметра светового луча, для того чтобы можно было вводить и выводить лучи из диска. Интерференционное отражающее покрытие плоских зеркальных поверхностей диска и просветляющие покрытия диска должны быть рассчитаны на длину волны лазера.

Электромагнитная волна с волновым вектором падает на плоскую поверхность вращающегося с угловой скоростью ω оптического диска радиуса R0 под углом ϑ0 в плоскости YAP. Верхняя и нижняя поверхности ОД имеют отражающие покрытия радиуса R1. Вследствие нарушения закона Снеллиуса (т.к. преломление происходит на тангенциальном разрыве скорости) угол преломления ϑ2 луча с волновым вектором становится равным для указанного направления вращения, а точка В выхода луча из диска смещается в точку В'. В результате этого волновой вектор прошедшей волны выходит параллельно , но со сдвигом. Луч, идущий в противоположную сторону, смещается аналогично в ту же сторону, т.е. по направлению движения среды.

Разность радиусов R0 и R1 приблизительно равна диаметру светового луча и не должна быть меньше этой величины. Дальнейшее уменьшение радиуса R1 нежелательно, т.к. при этом будет уменьшаться возможное число переотражений на плоских поверхностях ОД и, как следствие, увеличиваться угол падения луча, что приведет к уменьшению амплитуды преломленного луча и, следовательно, к снижению отношения сигнал/шум.

Смещение интерференционной картины определяется по изменению времени следования интерференционных полос по апертуре фотодетектора. Так как в течение всех измерений интерферометр настроен в одной и той же рабочей точке фазовой кривой, смещение интерференционной картины будет пропорционально времени следования полос. Поэтому необходимо обеспечение достаточно высокой частоты вращения ОД.

Так как чувствительность зависит от оптического пути светового луча в материале диска, необходимо обеспечить высокое значение показателя преломления материала диска.

Перед началом измерений интерферометр юстируется таким образом, чтобы за один оборот ОД по апертуре ФД проходили в горизонтальном направлении одна, две или три интерференционные полосы: в первую половину периода в одном направлении, во вторую - в другом. Количество интерференционных полос, которые будут перемещаться по апертуре ФД, зависит в основном от клина ОД, а также от юстировки интерферометра. Измеряемой величиной является интервал времени между моментами прохождения выбранной интерференционной полосой апертуры ФД. Так как эта величина прямо зависит от периода вращения ОД, ее нормируют на период Т.

Пространственно-временная оптическая анизотропия приводит к вариациям в положении интерференционной картины при повороте интерферометра в пространстве. Эти вариации выделяются из временного сигнала следования интерференционных полос по апертуре фотодетектора.

В результате многократных изменений ориентации интерферометра в трехмерном пространстве восстанавливается трехмерная пространственная картина анизотропии скорости электромагнитного излучения в движущейся среде, которая может быть записана в память бортового компьютера. Эта карта может иметь привязку к карте звездного неба. Точность привязки зависит от точности калибровки устройства измерения анизотропии пространства скоростей электромагнитного излучения. Калибровка устройства осуществляется по сравнению результатов измерений с результатами измерений трехмерной карты анизотропии реликтового электромагнитного излучения.

Предлагаемое устройство может быть интегрировано в систему измерения ориентации, точного позиционирования и управления движением.

Интерферометр должен быть сконструирован на двух оптических платформах, оснащенных системой вибростабилизации. На одной из платформ должен находиться электродвигатель с ОД, на другой - остальная часть интерферометра. Обе платформы располагаются на вращающемся основании. Для определения зависимости сигнала от пространственной ориентации интерферометра положение интерференционной картины измеряется при повороте интерферометра на 360 градусов в прямом и обратном направлениях. Поворот может осуществляться шаговым двигателем.

Интерферометр должен быть помещен в кожух с активной системой термостабилизации. Угол поворота регистрируется фотоэлектронной системой и затем проходит обработку на ПК.

Источники информации

[1]. Brillet A., Hall J.L. Improved laser test of the isotropy of space. // Phys. Rev. Lett. 1979. V.42. N9, pp.549-552.

[2]. Jaseja T.S., Javan A., Murray J., Townes C.H. Test of Special Relativity or of the Isotropy of Space by Use of Infrared Masers. Phys. Phys. Rev. 1964. V.133, N5A. pp.1221-1225.

[3]. Michelson A.A., Pease F.G., Pearson F. Repetition of the Michelson-Morley Experiment // Nature, 1929. V.123, p.88.

[4]. Гладышев В.О., Гладышева Т.М., Дашко М., Трофимов Н., Шарандин Е.А. Анизотропия пространства скоростей электромагнитного излучения в движущихся средах // Гиперкомплексные числа в геометрии и физике. 2006, Т.3, №2(6), с.173-187.

Похожие патенты RU2498214C1

название год авторы номер документа
ИНТЕРФЕРЕНЦИОННЫЙ ИЗМЕРИТЕЛЬ УГЛОВОЙ СКОРОСТИ И УСКОРЕНИЯ 2014
  • Гладышев Владимир Олегович
  • Портнов Дмитрий Игоревич
RU2564381C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ КАЧЕСТВА ПЛОСКИХ ОПТИЧЕСКИХ ДЕТАЛЕЙ, РАСПОЛОЖЕННЫХ ПОД УГЛОМ К ОПТИЧЕСКОЙ ОСИ 2014
  • Барышников Николай Васильевич
  • Гладышева Яна Владимировна
  • Животовский Илья Вадимович
  • Денисов Дмитрий Геннадьевич
  • Абдулкадыров Магомед Абдуразакович
  • Патрикеев Владимир Евгеньевич
RU2573182C1
Способ измерения частотных характеристик механических конструкций оптическим методом 2017
  • Осипов Михаил Николаевич
  • Щеглов Юрий Денисович
  • Лимов Михаил Дмитриевич
RU2675076C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОРОТКИХ ДИСТАНЦИЙ ДО ДИФФУЗНО-ОТРАЖАЮЩИХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Хопов Владимир Викторович[Ru]
RU2092787C1
ИНТЕРФЕРОМЕТРИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ПРОЗРАЧНЫХ СЛОЕВ (ВАРИАНТЫ) 1998
  • Иванов В.В.
  • Катин Е.В.
  • Маркелов В.А.
  • Новиков М.А.
  • Тертышник А.Д.
RU2141621C1
ИНТЕРФЕРОМЕТР С ФУНКЦИЕЙ ДИФФЕРЕНЦИАЛЬНЫХ ИЗМЕРЕНИЙ 2020
  • Вензель Владимир Иванович
  • Семёнов Андрей Александрович
  • Соломин Станислав Олегович
  • Муравьева Елена Станиславовна
RU2744847C1
Интерферометр для контроля вогнутых асферических поверхностей 1990
  • Комраков Борис Михайлович
  • Бодров Сергей Васильевич
  • Васильев Александр Алексеевич
SU1728650A1
ДИФРАКЦИОННЫЙ ИНТЕРФЕРОМЕТР (ВАРИАНТЫ) 2003
  • Коронкевич В.П.
  • Ленкова Г.А.
RU2240503C1
ИНТЕРФЕРОМЕТР МАЙКЕЛЬСОНА С ПОДВИЖНЫМ ОТРАЖАТЕЛЕМ (ЕГО ВАРИАНТЫ) 1994
  • Мушкаев Виктор Васильевич
RU2092786C1
ИНТЕРФЕРЕНЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК ОПТИЧЕСКИХ ЭЛЕМЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1993
  • Кулеш В.П.
  • Москалик Л.М.
  • Близнюк Ю.А.
  • Шаров А.А.
RU2078307C1

Иллюстрации к изобретению RU 2 498 214 C1

Реферат патента 2013 года УСТРОЙСТВО ИЗМЕРЕНИЯ АНИЗОТРОПИИ ПРОСТРАНСТВА СКОРОСТЕЙ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Изобретение относится к устройству для ориентации объектов в пространстве на основе измерения анизотропии пространства скоростей электромагнитного излучения в движущейся среде. Устройство представляет собой оптический интерферометр, выполненный по кольцевой схеме, и включает лазер, оптическую систему, светоделители, зеркала, фотодетектор, а также вращающийся оптический диск, выполненный в виде клина, работающего на просвет. На плоских поверхностях диска выполнены отражающие покрытия в виде кольцевых участков, причем внешний радиус отражающих колец меньше внешнего радиуса диска на величину диаметра светового луча для обеспечения ввода и вывода луча из диска. Фотодетектор выполнен в виде набора фотоэлементов, расположенных в плоскости локализации интерференционной картины вдоль прямой линии параллельно интерференционной полосе. Изобретение обеспечивает помехозащищенность устройства. 2 ил.

Формула изобретения RU 2 498 214 C1

Устройство измерения анизотропии пространства скоростей электромагнитного излучения, представляющее собой оптический интерферометр, выполненный по кольцевой схеме, расположенный на поворотном основании и помещенный в термостабилизированный кожух, состоящий из лазера, оптической системы, светоделителей, зеркал, фотодетектора, вращающегося оптического диска, отличающееся тем, что оптический диск выполнен в виде клина, работающего на просвет, на плоские поверхности диска нанесены идентичные отражающие покрытия, причем внешний радиус отражающих покрытий меньше внешнего радиуса оптического диска на величину, не меньшую, чем диаметр луча, а фотодетектор выполнен в виде набора фотоэлементов, расположенных в плоскости локализации интерференционной картины вдоль прямой линии параллельно интерференционной полосе.

Документы, цитированные в отчете о поиске Патент 2013 года RU2498214C1

ГЛАДЫШЕВ В.О
и др
Анизотропия пространства скоростей электромагнитного излучения в движущихся средах
- Гиперкомплексные числа в геометрии и физике, 2006, т.3, 2(6), с.173-187
ГЛАДЫШЕВ В.О
и др
Анизотропия пространства скоростей распространения электромагнитного излучения в движущихся средах
Необратимые процессы в природе и технике
Труды

RU 2 498 214 C1

Авторы

Гладышев Владимир Олегович

Тиунов Павел Сергеевич

Леонтьев Андрей Дмитриевич

Шарандин Евгений Анатольевич

Даты

2013-11-10Публикация

2012-03-22Подача