Изобретение относится к области получения ускоренных ионов в нейтронных трубках, применяемых в медицине, системах идентификации ядерных материалов, устройствах каротажа нефтегазовых скважин и в других областях.
Известен способ получения ускоренных ионов и нейтронная трубка, в которой этот способ реализован (Дадонов A.M., Кирьянов Г.И., Соловьев А.И., Экспериментальные исследования ускорительной трубки с ВЧ-источником ионов, Сб. Вопросы атомной науки и техники. Радиационная техника, М., Атомиздат, выпуск 16, 1978, стр.124-129). Нейтронная трубка содержит герметичную колбу в виде двух сообщающихся полостей, - плазменной и мишенной, разделенных заземленным экраном-экстрактором. Внутри мишенной полости расположена ускорительная электродная система и нейтронопроизводящая мишень, бомбардируемая ускоренными ионами изотопов водорода. Плазма образуется в плазменной полости при возбуждении высокочастотного (ВЧ) электрического разряда с использованием расположенных вне колбы витков индукционной катушки, соединенной с ВЧ генератором. Колба наполнена рабочим газом - смесью дейтерия и трития до давления 10-2-10-4 Тор.
С помощью ускорительной системы электродов осуществляют вытягивание ионов из плазмы высокочастотного разряда и ускорение их по направлению к располагаемой вне плазмы нейтронопроизводящей мишени, находящейся под отрицательным потенциалом 230÷250 кВ. На пути к мишени ионы ускоряются до энергий 230÷250 кВ, проходя через центральные отверстия в ряде электродов ускорительной системы, формирующей ускоряющее ионы электрическое поле вне плазменной полости. Генерирование нейтронов происходит при бомбардировании ускоренными ионами нейтронопроизводящей мишени, насыщенной изотопами водорода.
Недостатком данного способа получения ускоренных ионов и нейтронной трубки, в которой этот способ реализован, является:
- наличие шунтирующего тока вторичных электронов, возникающих при взаимодействии ионов с металлическими поверхностями элементов конструкции, вследствие чего значительная часть энерговыделения является паразитной, что приводит к излишнему нагреву нейтронной трубки;
- нейтронная трубка содержит внутри герметичной колбы большое количество металлических элементов, что в условиях интенсивного энерговыделения вызывает испарение металла и осаждение его в значительных количествах на диэлектрических поверхностях высоковольтных изоляторов. В конечном итоге это приводит к снижению ресурса работы нейтронной трубки.
Известен способ получения ускоренных ионов и нейтронная трубка, в которой он реализован, выбранные нами в качестве прототипа (Bounden J.E., Lomer P.D., Wood J.D.L.H. A neutron tube with constant output (1010 n/sec) for activation analysis and reactor applications, Nucl. Instr. and Meth., 1965, 33, 283-288.)
Нейтронная трубка по прототипу содержит герметичную колбу в виде двух осесимметричных сообщающихся полостей, разделенных заземленным экраном-экстрактором с центральным отверстием, насыщенную изотопами водорода нейтронопроизводящую мишень в мишенной полости, а также расположенную вне колбы систему возбуждения высокочастотного безэлектродного электрического разряда для генерации плазмы в плазменной полости. Между нейтронопроизводящей мишенью и экраном - экстрактором располагается осесимметричный полый мишенный экран, потенциал которого на 400 В ниже потенциала нейтронопроизводящей мишени. Колба наполнена рабочим газом - DT смесью до давления ~10-2 Тор. Система возбуждения высокочастотного разряда представляет собой катушку из нескольких охватывающих снаружи мишенную полость колбы витков, соединенных с ВЧ генератором. При включении ВЧ генератора в плазменной полости образуется плазма высокочастотного разряда. Подача отрицательных потенциалов UM на мишень и Uэкр=(UM-400В) на мишенный экран, где UM=-100…-120 кВ, приводит к возникновению между мишенным экраном и заземленным экраном-экстрактором электрического поля, ускоряющего ионы электроразрядной плазмы, выходящие из зоны электрического разряда через центральное отверстие в экране-экстракторе. Ускоренные до 100…120 кэВ ионы попадают в область ограниченную мишенным экраном и мишенью, достигают нейтронопроизводящую мишень, вызывая реакции ядерного синтеза, сопровождающиеся нейтронным излучением. Побочным эффектом ионной бомбардировки мишени является выбивание вторичных электронов, которые могут шунтировать ток ускоренных ионов. Разница потенциалов в 400 В между мишенью и мишенным экраном обеспечивает электрическое поле, возвращающее выбитые вторичные электроны вновь на мишень.
Недостатками способа и устройства по прототипу является:
- наличие шунтирующего тока вторичных электронов, при котором возникает паразитное энерговыделение, сравнимое или даже превышающее полезное энерговыделение, определяемое энергией и током ускоренных ионов. Шунтирующий ток вторичных электронов из мишени может быть заперт с помощью разности потенциалов 400 В между мишенью и мишенным экраном, однако ионной бомбардировке подвергается не только мишень, но и другие металлические элементы конструкции, в том числе и сам мишенный экран. В результате в устройстве - прототипе шунтирующий ток вторичных электронов в восемь раз превышает ионный ток, равный 0,2 мА. Соответственно, паразитное энерговыделение в нейтронной трубке в восемь раз превышает полезное энерговыделение;
- устройство содержит большое количество металлических элементов конструкции, располагаемых внутри герметичного объема колбы нейтронной трубки. Под действием паразитного энерговыделения происходит частичное испарение металла и осаждение на диэлектрических поверхностях высоковольтных изоляторов. В результате снижается их электропрочность, что в конечном итоге уменьшает ресурс работы трубки.
Решаемой задачей данного изобретения является уменьшение паразитного энерговыделения за счет снижения шунтирующего электронного тока и уменьшение количества металлических элементов электродной системы нейтронной трубки.
Техническим результатом при решении данной задачи является увеличение ресурса нейтронной трубки.
Технический результат достигается тем, что по сравнению с известным способом получения ускоренных ионов в нейтронных трубках, заключающимся в том, что в части объема герметичной колбы трубки генерируют плазму с помощью высокочастотного безэлектродного электрического разряда, осуществляют вытягивание ионов из зоны электрического разряда и их ускорение по направлению к располагаемой вне зоны разряда нейтронопроизводящей мишени, новым является то, что для генерации плазмы используют безэлектродный высокочастотный разряд емкостного типа, а ускоряющее ионы электрическое поле создают приложением к плазме высокого положительного потенциала.
Технический результат достигается также тем, что по сравнению с известной нейтронной трубкой, содержащей герметичную колбу в виде осесимметричных сообщающихся плазменной и мишенной полостей, разделенных заземленным экраном-экстрактором с центральным отверстием, нейтронопроизводящую мишень в мишенной полости, а также расположенную вне колбы систему возбуждения высокочастотного безэлектродного электрического разряда для генерации плазмы в плазменной полости, новым является то, что система возбуждения высокочастотного безэлектродного электрического разряда содержит примыкающие к стенкам колбы электроды, возбуждающие разряд емкостного типа, при этом в плазменную полость дополнительно введен потенциальный высоковольтный электрод, а заземленный экран - экстрактор с центральным отверстием герметично изолирован от объема колбы.
Реализация предложенного способа получения ускоренных ионов позволяет предельно сократить количество металлических элементов внутри колбы и исключить контакт ускоряемых ионов с металлическими поверхностями. Это обеспечивается за счет введения в плазму высокого положительного потенциала и изоляции заземленного экрана - экстрактора от объема колбы. Решению вопроса высоковольтной изоляции контактирующего с плазмой потенциального высоковольтного электрода в значительной степени способствует то, что для создания плазмы применяется высокочастотный электрический разряд емкостного типа (Райзер Ю.П., Шнейдер М.Н., Яценко Н.А. Высокочастотный емкостный разряд: Физика. Техника эксперимента. Приложения. М.: Наука, 1995). При использовании предложенного способа ионного ускорения ускоряющее ионы электрическое поле сконцентрировано вблизи центрального отверстия заземленного экрана-экстрактора. После попадания в мишенную полость и удалении от экрана-экстрактора на расстояние, превышающее несколько диаметров его центрального отверстия, ионы движутся практически по инерции, имея энергии порядка 100 кэВ, соответствующие потенциалу дополнительного высоковольтного электрода, введенного в электроразрядную плазму. В этих условиях шунтировать ионный ток могут только электроны, выбиваемые ускоренными ионами из нейтронопроизводящей мишени. Однако, этот шунтирующий ток можно легко исключить без заметного ущерба для ионного тока и для энергии ускоренных ионов, приложив к мишени сравнительно невысокий, порядка 500 В, положительный потенциал смещения. За счет этого можно полностью запереть шунтирующий электронный ток и исключить тем самым паразитное энерговыделение, что позволит значительно увеличить ресурс работы нейтронной трубки. Увеличению ресурса способствует также и сокращение количества металлических элементов внутри колбы. В предлагаемой конструкции нейтронной трубки таких металлических элементов всего два, - это потенциальный высоковольтный электрод, контактирующий с электроразрядной плазмой, и нейтронопроизводящая мишень. Для увеличения ресурса это существенно даже в отсутствие паразитного энерговыделения, поскольку нагрев трубки в любом случае имеет место, особенно для нейтронных трубок с повышенным выходом нейтронов.
На фиг.1 показана конструкция нейтронной трубки, где:
1 - мишенная полость колбы;
2 - герметичный диэлектрический корпус колбы;
3 - нейтронопроизводящая мишень;
4 - заземленный металлический экран - экстрактор;
5 - плазменная полость колбы;
6 - плазма высокочастотного электрического разряда;
7 - высоковольтный потенциальный электрод;
8 - система электродов высокочастотного электрического разряда емкостного типа.
Представленная на фиг.1 конструкция нейтронной трубки содержит герметичную колбу в виде осесимметричных сообщающихся полостей 5 и 1, разделенных охватывающим шейку колбы заземленным экраном - экстрактором 4, расположенная снаружи колбы электрически соединенная с ВЧ генератором система электродов 8 для возбуждения электрического разряда емкостного типа и генерирования плазмы 6 в плазменной полости 5, электрод 7 для введения в плазму 6 положительного высоковольтного потенциала, нейтронопроизводящую мишень 3 в мишенной полости 1. Система электродов 8 представляет собой примыкающие к стенкам колбы электроды, соединенные с высокочастотным генератором и возбуждающие разряд емкостного типа, при этом введен контактирующий с плазмой 6 дополнительный высоковольтный электрод 7, а заземленный экран-экстрактор 4 герметично изолирован от объема колбы.
Первоначально объем колбы наполняется рабочим газом - дейтерием, либо равнокомпонентной смесью дейтерия и трития до давления 10-2-10-4 Тор. При включении высокочастотного генератора в плазменной полости 5 загорается разряд, причем электроразрядная плазма 6 занимает значительную часть объема плазменной полости 5, примерно как это показано на фиг.1. При подаче на электрод 7 положительного потенциала 70÷250 кВ вблизи центрального отверстия заземленного экрана-экстрактора возникает электрическое поле, ускоряющее ионы электроразрядной плазмы по направлению к мишенной полости. Ускоряемые ионы набирают энергию порядка 100 кэВ практически сразу на входе в мишенную полость 1, пройдя вдоль оси за экран-экстрактор 3 расстояние порядка нескольких диаметров его центрального отверстия. Далее ускоренные ионы движутся уже по инерции по направлению к нейтронопроизводящей мишени 3, бомбардируя ее и обеспечивая тем самым генерирование нейтронов. В предлагаемой конструкции нейтронной трубки только мишень 3 может быть источником вторичных электронов, выбиваемых ускоренными ионами. Однако шунтирующий ток вторичных электронов может быть легко заперт без заметного ущерба для ионного тока и энергии ускоренных ионов. Для этого достаточно приложить к нейтронопроизводящей мишени сравнительно невысокий положительный потенциал порядка 500 В. При достаточном удалении нейтронопроизводящей мишени от экрана - экстрактора движение вторичных электронов будет определяться электрическим полем, зависящим только от приложенного к мишени положительного потенциала, возвращающим выбитые вторичные электроны вновь на мишень. Благодаря этому, шунтирующий ток вторичных электронов может быть полностью исключен. Электродная система нейтронной трубки содержит в герметичном объеме колбы предельно малое число металлических элементов, - только потенциальный высоковольтный электрод 7 и нейтронопроизводящую мишень 3, благодаря чему можно предельно снизить количество испаряемого металла и увеличить за счет этого ресурс работы нейтронной трубки.
Предлагаемый способ получения ускоренных ионов был проверен экспериментально. Использовалась двуполостная стеклянная колба диаметром 60 мм с дейтериевым наполнением до давления 10-2÷10-4 Тор. Осесимметричные полости колбы сообщаются между собой через канал в шейке колбы с внутренним диаметром 3 мм, длиной около 5 мм. Шейку колбы охватывает расположенный снаружи колбы экран - экстрактор, отделенный от плазмы стенкой колбы. Экран - экстрактор выполнен в виде заземленного металлического диска с центральным отверстием диаметром 8 мм. Высокочастотный емкостный разряд в плазменной полости возбуждается с использованием ВЧ генератора с рабочей частотой 40, 68 МГц. В эксперименте воспроизводились все условия работы нейтронной трубки, за исключением максимальной энергии ускоренных ионов, которая в данном случае не превышала 10 кэВ. Энергия ускоренных ионов при этом заведомо недостаточна для реакций ядерного синтеза, поэтому вместо нейтронопроизводящей мишени использовался молибденовый диск, исполняющий роль токового коллектора для ускоренных ионов. Ток в цепи коллектора регистрировался с помощью микроамперметра. Варьировались давление дейтерия, мощность высокочастотного разряда, напряжение на потенциальном электроде и положительное напряжение смещения на коллекторе. В результате были получены данные, подтверждающие справедливость предложенного способа получения ускоренных ионов. В частности, при давлении дейтерия 10-4 Тор, вводимой в емкостный электрический разряд высокочастотной мощности на уровне 10 Вт, напряжении на потенциальном электроде ~10 кВ, напряжении смещения на токовом коллекторе ~500 В ионный ток составил около 100 мкА при нулевом шунтирующем токе вторичных электронов. Ионный ток возрастает с увеличением напряжения на потенциальном электроде, вводимой высокочастотной мощности, давлении рабочего газа. Анализ полученных экспериментальных данных указывает на то, что предложенным способом возможно получение пучков ускоренных ионов с токами в несколько миллиампер и создание на их основе нейтронных трубок с выходом на уровне 1011 н/с и выше.
название | год | авторы | номер документа |
---|---|---|---|
ИСТОЧНИК ИОНОВ ДЛЯ НЕЙТРОННОЙ ТРУБКИ | 2015 |
|
RU2588263C1 |
УНИВЕРСАЛЬНАЯ НЕЙТРОННАЯ ТРУБКА С ЭЛЕКТРОТЕРМИЧЕСКИМИ ИНЖЕКТОРАМИ РАБОЧЕГО ГАЗА | 2015 |
|
RU2601961C1 |
Импульсный лазерный генератор нейтронов | 1978 |
|
SU713374A1 |
ПЛАЗМЕННЫЙ ИСТОЧНИК ПРОНИКАЮЩЕГО ИЗЛУЧЕНИЯ | 2013 |
|
RU2548005C2 |
Импульсный нейтронный генератор | 2021 |
|
RU2773038C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ | 2023 |
|
RU2808774C1 |
Импульсная нейтронная трубка | 1975 |
|
SU528834A1 |
Способ получения плазменно-активированных стерильных жидкостей | 2020 |
|
RU2740502C1 |
Импульсный нейтронный генератор | 2021 |
|
RU2776026C1 |
СПОСОБ СТЕРИЛИЗАЦИИ ОБЪЕКТОВ | 1993 |
|
RU2102084C1 |
Изобретение относится к области создания ускоренных ионов в нейтронных трубках, применяемых в медицине, системах идентификации ядерных материалов, устройствах каротажа нефтегазовых скважин и в других областях. В заявленном изобретении в части объема герметичной колбы трубки генерируют плазму с помощью высокочастотного безэлектродного электрического разряда, осуществляют вытягивание ионов из зоны электрического разряда и их ускорение по направлению к располагаемой вне зоны разряда нейтронопроизводящей мишени. При этом используют безэлектродный высокочастотный разряд емкостного типа, а ускоряющее ионы электрическое поле создают приложением к плазме высокого положительного потенциала. Заявленное устройство содержит герметичную колбу, нейтронопроизводящую мишень в мишенной полости, а также расположенную вне колбы систему возбуждения высокочастотного безэлектродного электрического разряда для генерации плазмы в плазменной полости. Система возбуждения разряда содержит примыкающие к стенкам колбы электроды, возбуждающие разряд емкостного типа, в плазменную полость дополнительно введен потенциальный высоковольтный электрод, а заземленный экран-экстрактор с центральным отверстием герметично изолирован от объема колбы. Технический результат заключается в увеличении ресурса нейтронной трубки. 2 н.п.ф-лы, 1 ил.
1. Способ получения ускоренных ионов в нейтронных трубках, заключающийся в том, что в части объема нейтронной трубки генерируют плазму высокочастотного безэлектродного электрического разряда, затем осуществляют вытягивание ионов из плазмы и ускорение их по направлению к располагаемой вне плазмы нейтронопроизводящей мишени, отличающийся тем, что для генерации плазмы используют безэлектродный высокочастотный разряд емкостного типа, а ускоряющее ионы электрическое поле создают приложением к плазме высокого положительного потенциала.
2. Нейтронная трубка, содержащая герметичную колбу в виде двух осесимметричных сообщающихся полостей, разделенных заземленным экраном - экстрактором с центральным отверстием, нейтронопроизводящую мишень в мишенной полости, а также расположенную вне колбы систему возбуждения высокочастотного безэлектродного электрического разряда для генерации плазмы в плазменной полости, отличающаяся тем, что система возбуждения высокочастотного электрического разряда содержит примыкающие к стенкам колбы электроды, возбуждающие в плазменной полости электрический разряд емкостного типа, при этом в плазменную полость дополнительно введен потенциальный высоковольтный электрод, а заземленный экран - экстрактор с центральным отверстием герметично изолирован от объема колбы.
ПРОТЯЖЕННЫЙ ИСТОЧНИК ИОНОВ | 2004 |
|
RU2261497C1 |
ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ | 2001 |
|
RU2239962C2 |
ЛАЗЕРНЫЙ ИСТОЧНИК ИОНОВ С МУЛЬТИПОЛЬНЫМ МАГНИТНЫМ ПОЛЕМ | 2008 |
|
RU2378735C1 |
ЭЛЕМЕНТ КИНЕМАТИЧЕСКОЙ ПАРЫ ШАРНИРА | 0 |
|
SU362953A1 |
Авторы
Даты
2013-11-27—Публикация
2011-04-05—Подача