АППАРАТУРА ДЛЯ ИССЛЕДОВАНИЯ СКВАЖИН Российский патент 2013 года по МПК E21B47/06 E21B47/08 

Описание патента на изобретение RU2500885C1

Изобретение относится к области эксплуатации скважин и может быть использовано для проведения геофизических исследований скважин.

Известна аппаратура, реализуемая в способе аналогичного назначения, согласно которого с помощью термического каротажа регистрируют термограмму по стволу скважины и по величине зарегистрированных температурных аномалий определяют тепловые свойства пород, окружающих скважину /Патент РФ №2136880, кл. Е21В 47/00, 1999/.

Недостатком аналога является влияние на результаты исследований различных амплитудных факторов, например, изменение диаметра скважины.

Известна аппаратура для исследования скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр /Патент США №2274248, кл.73-154, 1942/.

Данная аппаратура принята за прототип. Недостатком прототипа являются погрешности, получаемые при интерпретации термограмм. Поскольку величины температурных градиентов на термограмме, по которым определяют теплопроводность пластов, окружающих скважину, зависят не только от тепловых свойств пород, но и от величины прогрева ствола скважины, а величина прогрева ствола скважины зависит от ее диаметра. Поэтому чем больше поперечное сечение ствола скважины, тем меньше прогрев окружающих ее пород для одной и той же мощности нагрева.

Техническим результатом, получаемым от внедрения изобретения, является устранение недостатка прототипа, то есть получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения.

Данный технический результат достигается за счет того, что известная аппаратура для исследования скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр, дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором, при этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя, или с управляющим входом управляемого привода лебедки спускоподъемного устройства.

В аппаратуре для исследования скважин скважинный профилемер установлен на каротажном кабеле-тросе с возможностью его смещения относительно нагревателя.

Аппаратура для исследования скважин дополнительно содержит центраторы каротажного кабеля-троса.

В аппаратуре для исследования скважин нагреватель и термометр закреплены на каротажном кабеле-тросе с возможностью изменения расстояния между ними.

Изобретение поясняется чертежами.

На фиг.1 представлена схема реализации аппаратуры в скважине; на фиг.2 - электронная схема аппаратуры.

Аппаратура, реализуемая в скважине 1 (фиг.1), содержит термическую каротажную систему (КС), выполненную в виде нагревателя 2 (фиг.2), подключенного к источнику 3 тока (ИТ 3), и термометра 4, соединенного выходом через усилитель 5 (У 5) с регистратором 6 (Р 6).

КС также включает в себя спускоподъемное устройство 7 (СПУ 7) в виде лебедки 8 с управляемым приводом 9 (УП 9), соединенным выходом с Р6.

Каротажный кабель-трос 10 кинематически связан с лебедкой 8. На кабеле-тросе 10 сверху вниз закреплен профилемер 11, нагреватель 2 и термометр 4.

Нагреватель 2 и термометр 4 выполнены с возможностью изменения расстояния между ними и расстояния от профилемера 11.

Аппаратура может дополнительно содержать один или несколько центраторов кабеля-троса.

Электронная схема (фиг.2) также содержит выходной прибор 12 (ВП 12), блок управления 13 (БУ 13) и переключатель 14.

Электрические связи между блоками электронной схемы показаны на фиг.2.

Выход профилемера 11 связан со входом ВП 12, соединенного выходом со входом БУ 13, выход которого соединен с переключателем 14. Переключатель 14 дистанционно позволяет подключать ВП 12 или к УП 9, или к ИТ 3.

Выходы У 5 и УП 9 подключены к двум входам Р 6, позволяя последнему синхронно регистрировать глубину погружения термометра 4 в скважину 1 и величину выходного сигнала с него.

Аппаратура работает следующим образом.

В скважину 1 спускают на каротажном кабеле-тросе 10 термометр 4, нагреватель 2 и профилемер 11. При спуске рычаги профилемера сложены (если применяется механический тип профилемера), а ИТ 3 нагревателя 2 выключен. При достижении забоя скважины 1 включают в работу профилемер 11 и нагреватель 2 и начинают с равномерной скоростью поднимать приборы 2, 4, 11 вверх, одновременно регистрируя температуру, глубину и диаметр скважины.

С помощью нагревателя 2 происходит разогревание ствола скважины 1 посредством теплового следа 15. Охлаждение ствола скважины 1 будет происходить тем интенсивнее, чем выше теплопроводность пород, окружающих нагретый участок скважины 1. Соответственно, интервалы глубин, представленные породами 16 с высокой теплопроводностью, будут отличаться в регистраторе Р 6 повышенными значениями температуры. На термограмме на этой глубине появляются температурные аномалии, по которым можно исследовать свойства пластов 16 горных пород.

При этом, когда диаметр скважины 1 изменяется, например, на глубине 17, температура нагрева скважины в этом месте также изменяется (при увеличении диаметра уменьшается, при уменьшении диаметра - увеличивается).

На термограмме на этой глубине также появится температурная аномалия, которая будет интерпретироваться как появление пласта с другими температурными свойствами породы, что может привести к погрешностям определения тепловых свойств пластов.

Для исключения подобных ошибок с профилемера 11, в зависимости от положения переключателя 14 на ИТ 3 или УП 9, своевременно подается командный сигнал по увеличению или уменьшению степени нагрева нагревателя 2, или по изменению скорости его подъема. Этим корректируются изменения температуры скважины из-за изменения ее диаметра.

При этом, если диаметр сечения скважины изменяется достаточно быстро, изменяют ток нагревателя 2, если плавно, то изменяют скорость каротажа.

Предварительно аппаратура проходит метрологические испытания и градуировку в заводских условиях, при которых подбирают оптимальные значения расстояний между термометром 4, нагревателем 2 и профилемером 11 для каждого вида испытуемых скважин.

Похожие патенты RU2500885C1

название год авторы номер документа
СПОСОБ ИССЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИНЫ 2011
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
RU2500886C2
ТЕРМИЧЕСКАЯ КАРОТАЖНАЯ СИСТЕМА ДЛЯ ОБСЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИН 2012
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
RU2506424C2
СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН 1997
  • Чесноков В.А.
  • Чеснокова Е.В.
RU2136880C1
СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН 2001
  • Чесноков В.А.
  • Хасанов М.М.
  • Янкин Б.Д.
RU2194855C1
ТЕРМИЧЕСКИЙ СПОСОБ ИССЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИНЫ 2012
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
RU2500887C1
Устройство с множеством датчиков с различными параметрами для мониторинга профиля притока пласта по многим методам 2020
  • Шель Виктор Александрович
  • Валиев Марат Шамилевич
RU2752068C1
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ КАРОТАЖА В РУДНЫХ СКВАЖИНАХ 2010
  • Астраханцев Юрий Геннадьевич
  • Голиков Юрий Владимирович
  • Крылов Сергей Александрович
RU2456643C2
СПОСОБ ОБНАРУЖЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 2005
  • Христофоров Анатолий Владиславович
  • Христофорова Наталья Николаевна
RU2298094C2
СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИНЫ 2012
  • Ибрагимов Наиль Габдулбариевич
  • Мухаметов Ильгиз Махмутович
  • Марунин Дмитрий Александрович
RU2485310C1
СПОСОБ ДОСТАВКИ СКВАЖИННЫХ ПРИБОРОВ К ЗАБОЯМ БУРЯЩИХСЯ СКВАЖИН СЛОЖНОГО ПРОФИЛЯ, ПРОВЕДЕНИЯ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ И КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Савич Анатолий Данилович
  • Черепанов Сергей Сергеевич
  • Шадрунов Антон Анатольевич
  • Шумилов Александр Владимирович
RU2603322C1

Иллюстрации к изобретению RU 2 500 885 C1

Реферат патента 2013 года АППАРАТУРА ДЛЯ ИССЛЕДОВАНИЯ СКВАЖИН

Изобретение относится к области эксплуатации скважин и может быть использовано для проведения геофизических исследований скважин. Техническим результатом является получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения. Аппаратура содержит термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр. Дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором. При этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя, или с управляющим входом управляемого привода лебедки спускоподъемного устройства. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 500 885 C1

1. Аппаратура для исследования скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр, отличающаяся тем, что дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором, при этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя или с управляющим входом управляемого привода лебедки спускоподъемного устройства.

2. Аппаратура по п.1, отличающаяся тем, что скважинный профилемер установлен на каротажном кабеле-тросе с возможностью его смещения относительно нагревателя.

3. Аппаратура по п.1, отличающаяся тем, что дополнительно содержит центраторы каротажного кабеля-троса.

4. Аппаратура по п.1, отличающаяся тем, что нагреватель и термометр закреплены на каротажном кабеле-тросе с возможностью изменения расстояния между ними.

Документы, цитированные в отчете о поиске Патент 2013 года RU2500885C1

СПОСОБ ПОЛУЧЕНИЯ ЗАМОРОЖЕННОГО ДЕСЕРТА 2003
  • Квасенков Олег Иванович
RU2274248C2
Устройство для шелушения коробочек хлопка 1936
  • Чудаков В.С.
SU53790A1
ИЗМЕРИТЕЛЬНОЕ МНОГОРЫЧАЖНОЕ УСТРОЙСТВО СКВАЖИННОГО ПРИБОРА 2009
  • Минияров Руслан Халитович
  • Мусин Марат Минниахметович
  • Леготин Леонид Георгиевич
  • Рафиков Валерий Галеевич
RU2414594C2
0
SU156504A1
Устройство для ввода информации 1990
  • Смирнов Александр Владимирович
  • Полянин Борис Иванович
  • Алифанов Борис Юрьевич
SU1698890A1

RU 2 500 885 C1

Авторы

Аксютин Олег Евгеньевич

Власов Сергей Викторович

Егурцов Сергей Алексеевич

Иванов Юрий Владимирович

Токмаков Андрей Иванович

Даты

2013-12-10Публикация

2012-05-30Подача