СПОСОБ КАЛИБРОВКИ ОПТИЧЕСКОЙ ИЗМЕРИТЕЛЬНОЙ АППАРАТУРЫ ПРИ ОЦЕНКЕ СРЕДНЕГО ДИАМЕТРА ДИСПЕРСНЫХ ЧАСТИЦ Российский патент 2013 года по МПК G01N15/02 G01R35/00 

Описание патента на изобретение RU2500998C2

Изобретение относится к измерительной технике, а более конкретно - к фотоэлектрическим устройствам, предназначенным для исследования дисперсных систем, и может быть использовано для калибровки фотоэлектрических устройств, измеряющих размеры частиц, взвешенных в различных дисперсионных средах.

Широко известен способ калибровки измерительных систем путем попеременного ввода в измерительный канал измеряемых и фиксированных эталонных сигналов, автоматического определения в интервалах между эталонными сигналами реальной рабочей преобразовательной характеристики системы по значениям эталонных сигналов путем интерполяции значений измеряемого сигнала в соответствии с опорными эталонными значениями, и дополнительного учета дестабилизирующих факторов [1].

В частности, применительно к фотоэлектрическим устройствам, определяющим размеры и концентрацию дисперсных частиц, известны способы калибровки по известной кривой распределения частиц по размерам в образцовой суспензии [2, 3]. Для этого подготавливают образцовую суспензию с заданной весовой концентрацией частиц [2], или суспензию, содержащую монодисперсные латексные или стеклянные сферические частицы [3]. Затем, используя подготовленные суспензии, проводят измерения калибруемым прибором и вносят необходимые коррективы в его характеристики.

Основной недостаток описанных способов калибровки - трудоемкость и сложность подготовки образцовой суспензии (изготовление микрочастиц, контроль и обеспечение заданных размеров этих частиц, отбор представительной пробы).

Известен, также, способ калибровки фотоэлектрических устройств для измерения размеров дисперсных частиц [3], заключающийся в размещении в зоне регистрации фотоэлектрического устройства частицы заданного размера и приведении ее в возвратно-поступательное движение с заданной частотой, с формированием при этом световых импульсов одинаковой амплитуды и подстройкой чувствительности фотоэлектрического устройства до уровня, при котором количество световых импульсов совпадает с числом пересечений частицей зоны регистрации.

Согласно этому способу в зоне регистрации одновременно не должно находиться более одной частицы, что не подходит для калибровки приборов, реализующих интегральные методы оптики аэрозолей, при которых в зоне регистрации одновременно находится множество частиц (например, метод спектральной прозрачности, метод малоуглового рассеяния). Кроме того, калибровка осуществляется по эталонным частицам, что не снимает проблемы изготовления микрочастиц с заданными размерами.

Наиболее близким к предлагаемому является способ калибровки [4, прототип], при котором измерения выполняются параллельно: калибруемым измерительным устройством и независимым прибором, имеющим точность, достаточную для данной задачи. Например, способ калибровки гидроакустической измерительной аппаратуры при оценке рыбных запасов с помощью телевизионной аппаратуры. В соответствии с этим способом измерения плотности рыбного косяка выполняются одновременно гидроакустической измерительной системой и телевизионной станцией, с последующим определением зависимости гидроакустических характеристик от плотности косяка, определенной визуально.

При калибровке фотоэлектрических устройств, измеряющих размеры дисперсных частиц, описанный способ имеет преимущество, заключающееся в возможности отказа от образцовых суспензий, благодаря независимому измерению характеристик исследуемой дисперсной системы. Недостатком способа является сложность регулирования характеристик дисперсной системы в процессе калибровки.

Задачей, на решение которой направлено предполагаемое техническое решение,. является упрощение калибровки за счет исключения операций, связанных с использованием эталонных порошков, а также расширение области применения за счет калибровки приборов, реализующих интегральные методы оптики дисперсных систем.

Поставленная цель достигается тем что, в известном способе калибровки путем одновременного измерения характеристик дисперсной системы калибруемой аппаратурой и фоторегистрирующим прибором, с последующим определением зависимости сигнала калибруемой аппаратуры от среднего диаметра частиц, определенного визуально, воздействуют ультразвуком на жидкость, создавая дисперсную систему с изменяющимися размерами частиц, освещают созданную дисперсную систему периодическими импульсами света, имеющими период, равный периоду ультразвуковых колебаний Туз, и длительность Ти≤0,1Туз,, синхронизованными с ультразвуковыми колебаниями, во время импульсов света измеряют калибруемой аппаратурой энергию оптических импульсов, поступающих от дисперсной системы, и фотографируют дисперсную систему, определяют средний диаметр дисперсных частиц (dср.a) - по результатам измерений, и (dср.ф) - по результатам фоторегистрации, изменяют сдвиг фаз между световыми импульсами и ультразвуковыми колебаниями, а также мощность ультразвука, после чего измерения и фоторегистрацию повторяют до получения требуемого количества калибровочных уровней, определяют преобразовательную характеристику калибруемой аппаратуры как зависимость величины dср.a от dср.ф.

По второму варианту дополнительно при калибровке регистрируют распределение энергии оптического импульса по длинам волн или в пространстве для каждого из заданных значений dср.ф, используют это распределение в качестве калибровочного уровня, а калибровочную характеристику оформляют в виде базы данных, устанавливающей соответствие полученных распределений энергии заданным значениям dср.ф.

Проанализируем значимость перечисленных операций с точки зрения достижения поставленной цели.

Воздействие ультразвуком на жидкость обеспечивает создание дисперсной системы с регулируемым средним радиусом дисперсных частиц (пузырей), поскольку их диаметр зависит от фазы ультразвуковых колебаний и может регулироваться выбором соответствующей фазы. Эту зависимость иллюстрирует график, приведенный на рисунке 1 [5], где Р - давление, создаваемое ультразвуком, R - радиус пузырька.

Освещение созданной дисперсной системы короткими периодическими импульсами света, синхронизованными с ультразвуковыми колебаниями, обеспечивает выбор требуемого радиуса пузыря. Рассмотрим рисунок 2 [6]. Для получения пузырьков со средним радиусом 150 мкм при интенсивности ультразвука 15 Вт/см2 необходимы длительность импульса около 5 мкс и запаздывание импульсов света на Δt=10 мкс относительно начала координат, то есть относительно момента, когда давление ультразвука равно нулю.

Таким образом, воздействие ультразвуком на жидкость и освещение дисперсной системы периодическими импульсами света, синхронизованными с УЗ колебаниями, обеспечивает возможность выполнения калибровки без эталонных порошков или суспензий, заменяя их дисперсной системой с регулируемым средним размером частиц.

Требование к длительности светового импульса: Ти≤0,1Туз, где Туз - период ультразвуковых колебаний, обеспечивает снижение неопределенности выбираемого для калибровки размера пузырьков (Rmax-Rmin) до приемлемой величины.

Изменение сдвига фаз Δt (Рисунок 2) между световыми импульсами и ультразвуковыми колебаниями, а также мощности ультразвука, обеспечивает изменение среднего диаметра пузырей и получение количества калибровочных уровней, необходимого для достижения требуемой точности калибровки.

По второму варианту регистрация распределения энергии оптических импульсов по длинам волн или в пространстве для каждого из заданных значений dср.ф, использование полученных распределений в качестве калибровочных уровней и оформление калибровочной характеристики в виде базы данных расширяют область применения предполагаемого технического решения на приборы, использующие распределение энергии по длинам волн Е(λ) (применяется в методе спектральной прозрачности) или по углам рассеяния Е(φ) (применяется в методах подлой индикатрисы и малоуглового рассеяния).

Осуществление способа иллюстрирует рисунок 3. Здесь пунктирные фигуры и линии соответствуют дополнительным операциям второго варианта.

Калибровочную кювету 1 (прозрачный сосуд с жидкостью, например, с водой) размещают в области регистрации калибруемой аппаратуры. В кювете при помощи ультразвукового излучателя 2 создают область кавитации 3.

Область кавитации освещают импульсным источником света 4, синхронизованным с ультразвуковым генератором 5.

Свет, рассеянный областью кавитации, подают на фотоприемники калибруемой аппаратуры 6 и независимого фоторегистратора 7.

Сочетанием периодических колебаний размеров пузырей под действием ультразвука и синхронного освещения кавитационной области создают стробоскопический эффект, обеспечивая достаточную экспозицию для измерения размеров пузырей калибруемым прибором и фоторегистратором при заданной фазе колебаний размеров пузырей.

Регулируя сдвиг фаз между ультразвуковыми колебаниями и моментами срабатывания импульсного источника света, обеспечивают изменение размеров измеряемых пузырей. Затем измерения и фоторегистрацию повторяют, получая требуемое количество калибровочных уровней.

В способе по второму варианту регистрируют распределения энергии оптических импульсов по длинам волн Е(λ) для заданных значений dср.ф, полученные распределения используют в качестве калибровочных уровней, а калибровочную характеристику (зависимость Е(λ) от dср.ф) оформляют в виде базы данных.

Таким образом.. действия, перечисленные в описании предполагаемого технического решения, необходимы и достаточны для решения поставленной задачи: упрощения калибровки за счет исключения операций, связанных с использованием эталонных порошков, а также расширение области применения за счет калибровки приборов, реализующих интегральные методы оптики дисперсных систем.

Предполагаемое техническое решение используется в БТИ АлтГТУ при выполнении госбюджетных НИР кафедрами Физики, Информатики и вычислительной математики для отработки оптической установки, измеряющей размер кавитационных пузырей методом спектральной прозрачности и может применяться при отработке промышленных технологий создания дисперсных систем (путем распыления жидкостей), технологий ультразвуковой обработки материалов и изделий, а также при экспериментальных исследованиях переноса излучения в дисперсных системах.

Список литературы, цитируемой при составлении заявки

1. Пат. 2262713 Российская Федерация, МПК G01R 35/00. Способ калибровки измерительных систем / Чекушкин В.В., Булкин В.В.

2. West O.C. Standarts for calibration of automatic particle counteurs / - Hydraulics and Pneumatics, July, 1975.

3. Кирш А.А., Двухименный В.А. Усовершенствование и градуировка струйного фотоэлектрического счетчика аэрозолей импа A3. - Коллоидный журнал, 1975, №4.

4. Пат. 2006200 Российская Федерация, МПК А01К 79/00. Способ калибровки гидроакустической измерительной аппаратуры при оценке рыбных запасов с помощью телевизионной аппаратуры и устройство для его осуществления; заявитель Полярный научно-исследовательский институт морского рыбного хозяйства и океанографии им. Н.М.Книповича - №2006200/С1; заявл. 23.04.1991; опубл. 30.01.1994 (прототип).

5. Brenner M.P., Hilgenfeldt S. and Lohse D. Single-bubble sonoluminescence // Rev. Mod. Phys. - 2002. - V.74. - P.425-483.

6. Измерения, автоматизация и моделирование в промышленности и научных исследованиях. Межвузовский сборник. Вып.1 ISSN 2223 2656; Бийск. Изд-во АлтГТУ им И.И. Ползунова. 2011. - С.22-26.

Похожие патенты RU2500998C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ КАЛИБРОВКИ ОПТИЧЕСКОЙ АППАРАТУРЫ, ИЗМЕРЯЮЩЕЙ СРЕДНИЙ ДИАМЕТР ДИСПЕРСНЫХ ЧАСТИЦ 2012
  • Галенко Юрий Анатольевич
  • Савин Игорь Игоревич
  • Заборовская Анжела Анатольевна
  • Старыгина Ольга Владимировна
  • Парфутчик Екатерина Игоревна
RU2507502C2
Устройство для подсчета частиц по размерам 1977
  • Карабегов Михаил Александрович
  • Ованесян Арам Гургенович
  • Месропян Эдуард Акопович
SU974141A1
СПОСОБ АНАЛИЗА ЗАГРЯЗНЕННОСТИ МОТОРНОГО МАСЛА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ДИСПЕРСНЫМИ ЧАСТИЦАМИ 2015
  • Семенов Владимир Владимирович
  • Ханжонков Юрий Борисович
  • Асцатуров Юрий Георгиевич
RU2583351C1
УСТРОЙСТВО АНАЛИЗА ЗАГРЯЗНЕННОСТИ МОТОРНОГО МАСЛА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ДИСПЕРСНЫМИ ЧАСТИЦАМИ 2015
  • Семенов Владимир Владимирович
  • Ханжонков Юрий Борисович
  • Асцатуров Юрий Георгиевич
  • Сучков Петр Валентинович
RU2583344C1
СПОСОБ АНАЛИЗА ЗАГРЯЗНЕННОСТИ МОТОРНОГО МАСЛА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ДИСПЕРСНЫМИ ЧАСТИЦАМИ 2012
  • Семенов Владимир Владимирович
  • Ханжонков Юрий Борисович
  • Асцатуров Юрий Георгиевич
RU2498269C1
Способ калибровки оптических анализаторов дисперсности 1988
  • Никифоров Алексей Александрович
  • Лунегов Сергей Николаевич
SU1642324A1
УСТРОЙСТВО АНАЛИЗА ЗАГРЯЗНЕННОСТИ МОТОРНОГО МАСЛА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ДИСПЕРСНЫМИ ЧАСТИЦАМИ 2012
  • Семенов Владимир Владимирович
  • Ханжонков Юрий Борисович
  • Асцатуров Юрий Георгиевич
RU2516200C2
Способ калибровки аэрозольного счетчика 1981
  • Уханов Илья Гаврилович
SU960588A1
МЕТРОЛОГИЧЕСКАЯ УСТАНОВКА ДЛЯ ОДНОВРЕМЕННОЙ КАЛИБРОВКИ КАНАЛОВ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ КОМПЛЕКСНОЙ СКВАЖИННОЙ АППАРАТУРЫ 2005
  • Лауфер Карл Карлович
  • Иванов Игорь Арнольдович
  • Степанов Сергей Геннадьевич
  • Писарев Александр Дмитриевич
RU2306534C2
Поверочно-калибровочное устройство для аппаратуры акустического каротажа 1980
  • Сулейманов Марат Агзамович
  • Чернышева Татьяна Алексеевна
  • Прямов Петр Алексеевич
  • Ермолаев Дмитрий Дмитриевич
  • Лобанков Валерий Михайлович
SU890318A1

Иллюстрации к изобретению RU 2 500 998 C2

Реферат патента 2013 года СПОСОБ КАЛИБРОВКИ ОПТИЧЕСКОЙ ИЗМЕРИТЕЛЬНОЙ АППАРАТУРЫ ПРИ ОЦЕНКЕ СРЕДНЕГО ДИАМЕТРА ДИСПЕРСНЫХ ЧАСТИЦ

Использование: для калибровки оптической измерительной аппаратуры при оценке среднего диаметра дисперсных частиц. Сущность: заключается в том, что проводят измерения характеристик дисперсной системы калибруемой аппаратурой и фоторегистрирующим прибором с последующим определением зависимости сигнала калибруемой аппаратуры от среднего диаметра частиц, определенного визуально, при этом воздействуют ультразвуком на жидкость, создавая дисперсную систему, освещают ее периодическими импульсами света длительностью Ти≤0,1Туз (где Туз - период ультразвуковых колебаний), синхронизованными с ультразвуковыми колебаниями, во время импульсов света измеряют калибруемой аппаратурой и определяют по результатам фоторегистрации средний диаметр дисперсных частиц (dср.а и dср.ф соответственно), изменяют сдвиг фаз между световыми импульсами и ультразвуковыми колебаниями, а также мощность ультразвука, после чего измерения и фоторегистрацию повторяют до получения требуемого количества калибровочных уровней, определяют калибровочную характеристику как зависимость величины dср.а от dср.ф. Технический результат: упрощение калибровки за счет исключения операций, связанных с использованием эталонных порошков, а также расширение области применения за счет калибровки приборов, реализующих интегральные методы оптики дисперсных систем. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 500 998 C2

1. Способ калибровки оптической измерительной аппаратуры для оценки среднего диаметра дисперсных частиц путем одновременного измерения характеристик дисперсной системы калибруемой аппаратурой и фоторегистрирующим прибором с последующим определением зависимости сигнала калибруемой аппаратуры от среднего диаметра частиц, определенного визуально, отличающийся тем, что воздействуют ультразвуком на жидкость, создавая дисперсную систему, освещают ее периодическими импульсами света длительностью Ти≤0,1Туз (где Туз - период ультразвуковых колебаний), синхронизованными с ультразвуковыми колебаниями, во время импульсов света измеряют калибруемой аппаратурой и определяют по результатам фоторегистрации средний диаметр дисперсных частиц (dср.а и dср.ф соответственно), изменяют сдвиг фаз между световыми импульсами и ультразвуковыми колебаниями, а также мощность ультразвука, после чего измерения и фоторегистрацию повторяют до получения требуемого количества калибровочных уровней, определяют калибровочную характеристику как зависимость величины dср.а от dср.ф.

2. Способ по п.1, отличающийся тем, что дополнительно регистрируют распределения энергии оптических импульсов по длинам волн или в пространстве для каждого из заданных значений dср.ф, используют полученные распределения в качестве калибровочных уровней, а калибровочную характеристику оформляют в виде базы данных.

Документы, цитированные в отчете о поиске Патент 2013 года RU2500998C2

Способ калибровки оптических анализаторов дисперсности 1988
  • Никифоров Алексей Александрович
  • Лунегов Сергей Николаевич
SU1642324A1
Фотоэлектрический прибор для седиментометрического анализа суспензий 1957
  • Альтшулер М.А.
  • Никитин А.И.
SU113980A1
ОПТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРА ЧАСТИЦ В СУСПЕНЗИИ 1994
  • Лопатин В.Н.
  • Апонасенко А.Д.
  • Щур Л.А.
  • Филимонов В.С.
RU2098794C1
Устройство для измерения среднего заутеровского диаметра частиц аэрозоля 1975
  • Ягодкин Виктор Иванович
  • Голубев Анатолий Георгиевич
SU535485A1
СПОСОБ ТЕПЛОИЗОЛЯЦИИ БЛОКА РАЗДЕЛЕНИЯ ВОЗДУХА "ВЕРМИКУЛИТ 1994
  • Ахмеров Марат Серажетдинович
RU2028537C1
JP 59136638 A, 06.08.1984.

RU 2 500 998 C2

Авторы

Галенко Юрий Анатольевич

Савин Игорь Игоревич

Старыгина Ольга Владимировна

Заборовская Анжела Анатольевна

Парфутчик Екатерина Игоревна

Даты

2013-12-10Публикация

2012-03-14Подача