СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА Российский патент 2013 года по МПК H01L21/308 B82B3/00 

Описание патента на изобретение RU2503084C1

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологиях, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем, биодатчиков и запоминающих устройств.

Известен способ формирования решетки нанокластеров кремния на структурированной подложке (RU 2214359[1]). Сущность изобретения заключается в очистке кремниевой подложки, ее маскировании, нанолитографии, осуществляемой таким образом, что границы маскирующих участков ориентированы под углом 45° к базовому срезу [110] подложки, структурировании поверхности подложки травлением, формируя при этом решетку из столбиков кремния, удалении маскирующего слоя, формировании решетки из нанокластеров на структурированной подложке путем термического окисления ее структурированной поверхности с постоянным ростом температуры в приповерхностной области до температуры не ниже 900°C с градиентом роста температуры не менее 106 К/см с образованием решетки из нанокластеров кремния внутри двуокиси кремния, охлаждении подложки до комнатной температуры с тем же постоянным градиентом не менее 106 К/см, повторении цикла нагрева и охлаждения до образования замкнутой оболочки двуокиси кремния и окончательном отжиге подложки с решеткой из нанокластеров кремния в замкнутой оболочке из двуокиси кремния длительностью не менее 20 мин в атмосфере азота. Изобретение позволяет создавать однородные по своим электрическим и оптическим свойствам дискретные наноэлементы, на базе которых строятся все приборы квантовой электроники и оптоэлектроники. Однако их использование имеет ограничения связанные с тем, что при создании приборов квантовой электроники и оптоэлектроники зачастую требуется соединение их отдельных компонентов протяженными проводниками, в то время как в соответствии с известным способом создается по сути точечный элемент проводника, окруженного собственным оксидом.

Известен способ формирования нанопроводов из тонких пленок кремния US 2006286788 [2] (патенты - аналоги US 7217946, WO 2004032182, FR 2845519, EP 1547136).

В соответствии с предложением, первоначально тонкая пленка легированного монокристаллического кремния (обычно между 15 и 20 нм) наносится методом литографии на относительно тонкую подложку из диоксида кремния (SiO2), которая в свою очередь формируется на достаточно толстом слое кремния. К краям пленки подсоединяют электроды, подключенные к источнику постоянного тока. В результате прохождения тока пленка преобразуется в гребенчатую структуру с линейными выступами, ориентированными вдоль линий тока. Диапазон плотности тока, который может привести к образованию такой структуры, зависит от полупроводника. После травления полученной структуры тонкая пленка растворяется, а сохраненные гребни представляют собой нанопровода из кремния на подложке из диоксида кремния с характерным поперечным размером около 7 нм. Недостатком известного способа является то, что он не позволяет создавать провода со сложной топологией, так как их формирование осуществляется по линиям тока, что приводит к получению только прямолинейных отрезков (гребней).

Наиболее близким к заявляемому способу по своей технической сущности и достигаемому результату является способ изготовления наноразмерных проволочных кремниевых структур, известный из описания к RU 2435730[3]. В соответствии со способом изготовления наноразмерных проволочных кремниевых структур на кремниевой подложке последовательно создают слой SiO2, слой кремния и затем опорный слой, на котором методами фотолитографии и ионно-плазменным травлением формируют рельеф с вертикальными стенками в местах будущего расположения наноразмерных элементов, на полученном рельефе конформно создают слой материала для формирования спейсера, который анизотропным травлением удаляют с горизонтальных поверхностей, а его часть, прилегающую к вертикальным стенкам рельефа, используют в качестве маски при анизотропном травлении наноразмерных кремниевых структур. В качестве опорного слоя используют рельеф с вертикальными стенками в кремнии, конформный слой создают термическим окислением поверхности кремния, а в качестве маски при травлении наноразмерных кремниевых структур используют окисленную вертикальную поверхность рельефа конформного слоя на кремнии.

Недостатком известного способа является его относительная сложность (большое количество промежуточных операций), а также то, что в результате получают провод без полной изоляции в виде собственного оксида.

Заявляемый способ направлен на формирование монокристаллических нанопроводников заданной геометрии в матрице собственного оксида. Указанный результат достигается тем, что способ формирования монокристаллических нанопроводников в матрице из собственного оксида, включает нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода, травление открытых участков монокристаллической пластины с обеспечением отрицательных углов наклона стенок вытравливаемых углублений к исходной поверхности без нарушения сплошности материала пластины и последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества.

Указанный результат достигается также тем, что перед проведением процесса окисления производится полное или частичное удаление маски.

Формирование заготовок нанопроводников с заданным рисунком путем удаления части вещества исходной монокристаллической пластины с образованием отрицательных углов наклона стенок углублений к исходной поверхности без нарушения сплошности материала пластины позволяет при осуществлении последующих операций обеспечить формирования монокристаллических нанопроводников в матрице из собственного оксида.

Последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества позволяет завершить процесс формирования монокристаллических нанопроводников в матрице из собственного оксида.

Удаление части вещества исходной монокристаллической пластины с образованием отрицательных углов наклона стенок углублений к исходной поверхности может осуществляться различными путями.

В одном из частных случаев реализации удаление части вещества исходной монокристаллической пластины осуществляют травлением не закрытых маской участков монокристаллической пластины.

Нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода обеспечивает в дальнейшем, при травлении, сохранение в нужных местах исходного материала монокристаллической пластины. Травление открытых участков монокристаллической пластины без нарушения сплошности материала пластины необходимо для того, чтобы исключить отделение сформированного нанопровода от исходной пластины и, соответственно, матрицы оксида. Последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного под маской проводящего вещества позволяет завершить процесс формирования монокристаллических нанопроводников в матрице из собственного оксида.

Сущность заявляемого способа поясняется примерами его реализации и графическими материалами, показывающими отдельные стадии процесса. На фиг.1 показан вариант реализации способа с использованием для удаления части вещества исходной монокристаллической пластины травления не закрытых маской участков монокристаллической пластины. На фиг.2 показан вариант реализации способа когда перед проведением процесса окисления производится полное или частичное удаление маски.

Пример 1. В самом общем случае способ реализуется следующим образом.

На поверхности монокристаллической пластины 1 из исходного материала по известной технологии создается маска 2 требуемой топологии формируемого монокристаллического нанопровода. Производится травление открытых участков монокристаллической пластины таким образом, чтобы профиль травления монокристаллического материала характеризовался отрицательным углом наклона к поверхности. Режимы травления и травитель подбираются экспериментальным путем или на основе справочных данных. При этом, глубина травления, величина отрицательного угла и ширина закрытого маской участка монокристалла должны обеспечить сплошность материала пластины непосредственно под маской с материалом монокристаллической пластины (т.е. в сечении структуры должен остаться перешеек в основании формирующейся трапециевидной балки, соединяющий ее с основной пластиной). Проводится процесс окисления монокристалла на постоянную глубину таким образом, чтобы перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. Другими словами, глубина равномерного окисления должна быть больше, чем половина ширины перешейка, но меньше половины ширины трапециевидной балки в широкой (верхней) части. Окисление может быть проведено любым известным способом: нагрев в атмосфере окислителя; ионно-плазменное окисление и т.п. Перед проведением процесса окисления маска может быть сохранена, а может быть и удалена. Поскольку ширина трапециевидной балки вверху больше ее ширины внизу (перешейка), в верхней части балки остается неокисленный материал, представляющий собой монокристалл, геометрическая форма которого задается рисунком маски на поверхности пластины, электрически изолированный от материала подложки.

Пример 2. На поверхности монокристаллической пластины 1 из кремния (Si) по технологии фотолитографии была создана маска 2 из оксида кремния (SiO2) требуемой топологии формируемого монокристаллического нанопровода. Произведено плазмохимическое травление открытых участков монокристаллической пластины травителем SF6 при температуре 25°C в течение 30 секунд. В результате профиль травления монокристаллического материала характеризовался отрицательным углом в 7,6 градусов наклона к поверхности. Глубина травления составила 75 нм, ширина верхней части сформированной трапециевидной балки составила 50 нм, а перешейка 30 нм.

Затем проводился процесс окисления монокристалла при помощи обработки в кислородной плазме на глубину 15 нм. В результате перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. В верхней части балки остался неокисленный материал, представляющий собой монокристалл, геометрическая форма которого была задана рисунком маски на поверхности пластины, электрически изолированный от материала подложки собственным оксидом.

Пример 3. На поверхности монокристаллической пластины 1 из кремния (Si) по технологии фотолитографии была создана маска 2 из фоторезиста толщиной 50 нм требуемой топологии формируемого монокристаллического нанопровода. Произведено плазмохимическое травление открытых участков монокристаллической пластины травителем SF6 при температуре 25°C в течение 30 секунд. В результате профиль травления монокристаллического материала характеризовался отрицательным углом в 7,6 градусов наклона к поверхности. Глубина травления составила 75 нм, ширина верхней части сформированной трапециевидной балки составила 50 нм, а перешейка 30 нм.

После этого производилось полное удаление маски с поверхности балки при помощи травления в водородной плазме при температуре 25°C в течение 90 секунд. В результате удаления маски балка представляет собой выступ 4 в монокристаллической пластине 1.

Затем проводился процесс окисления монокристалла при помощи обработки в кислородной плазме на глубину 15 нм. В результате перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. В средней части балки остался неокисленный материал, представляющий собой монокристалл, геометрическая форма которого была задана рисунком маски на поверхности пластины, электрически изолированный от материала подложки собственным оксидом, покрытый сверху слоем оксида толщиной 15 нм.

Похожие патенты RU2503084C1

название год авторы номер документа
Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока 2018
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Домантовский Александр Григорьевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2694800C1
НАНОРАЗМЕРНЫЙ ЛОГИЧЕСКИЙ ИНВЕРТОР ДЛЯ ЦИФРОВЫХ УСТРОЙСТВ 2020
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2744161C1
ЗОНД НА ОСНОВЕ ПОЛЕВОГО ТРАНЗИСТОРА С НАНОРАЗМЕРНЫМ КАНАЛОМ 2012
  • Соловьев Игорь Игоревич
  • Девятов Игорь Альфатович
  • Крупенин Владимир Александрович
  • Преснов Денис Евгеньевич
  • Трифонов Артем Сергеевич
  • Амитонов Сергей Владимирович
  • Крутицкий Павел Александрович
  • Колыбасова Валентина Викторовна
RU2539677C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕМЕНТОВ С НАНОСТРУКТУРАМИ ДЛЯ ЛОКАЛЬНЫХ ЗОНДОВЫХ СИСТЕМ 2015
  • Преснов Денис Евгеньевич
  • Божьев Иван Вячеславович
  • Крупенин Владимир Александрович
  • Снигирев Олег Васильевич
RU2619811C1
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩИХ МНОГОСЕКЦИОННЫХ ОПТИЧЕСКИХ ДЕТЕКТОРОВ 2015
  • Гурович Борис Аронович
  • Кулешова Евгения Анатольевна
  • Приходько Кирилл Евгеньевич
  • Тархов Михаил Александрович
  • Домантовский Александр Григорьевич
RU2581405C1
НАНОРАЗМЕРНОЕ ЛОГИЧЕСКОЕ УСТРОЙСТВО 2020
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2743510C1
МАТРИЧНЫЙ АВТОЭМИССИОННЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2017
  • Голишников Александр Анатольевич
  • Крупкина Татьяна Юрьевна
  • Тимошенков Валерий Петрович
  • Кицюк Евгений Павлович
  • Рязанов Роман Михайлович
  • Путря Михаил Георгиевич
RU2666784C1
Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное 2018
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Домантовский Александр Григорьевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2694799C1
НАНОРАЗМЕРНЫЙ ЭЛЕМЕНТ ЦИФРОВОЙ ЛОГИКИ 2020
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2744160C1
Способ формирования объемных элементов в кремнии для устройств микросистемной техники и производственная линия для осуществления способа 2022
  • Смирнов Игорь Петрович
  • Козлов Дмитрий Владимирович
  • Харламов Максим Сергеевич
  • Шестакова Ксения Дмитриевна
  • Корпухин Андрей Сергеевич
RU2794560C1

Иллюстрации к изобретению RU 2 503 084 C1

Реферат патента 2013 года СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение направлено на обеспечение формирование монокристаллических нанопроводников заданной геометрии в матрице собственного оксида. Способ формирования монокристаллических нанопроводников в матрице из собственного оксида включает нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода, травление открытых участков монокристаллической пластины с обеспечением отрицательных углов наклона стенок вытравливаемых углублений к исходной поверхности без нарушения сплошности материала пластины и последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества. Указанный результат достигается также тем, что перед проведением процесса окисления производится полное или частичное удаление маски. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 503 084 C1

1. Способ формирования монокристаллических нанопроводников в матрице собственного оксида, включающий нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода, травление открытых участков монокристаллической пластины с обеспечением отрицательных углов наклона стенок вытравливаемых углублений к исходной поверхности без нарушения сплошности материала пластины и последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества.

2. Способ по п.1, отличающийся тем, что перед проведением процесса окисления производят полное или частичное удаление маски.

Документы, цитированные в отчете о поиске Патент 2013 года RU2503084C1

СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНЫХ ПРОВОЛОЧНЫХ КРЕМНИЕВЫХ СТРУКТУР 2010
  • Кузнецов Евгений Васильевич
  • Рыбачек Елена Николаевна
RU2435730C1
СПОСОБ ФОРМИРОВАНИЯ РЕШЕТКИ НАНОКЛАСТЕРОВ КРЕМНИЯ НА СТРУКТУРИРОВАННОЙ ПОДЛОЖКЕ 2002
  • Скворцов А.М.
  • Соколов В.И.
  • Халецкий Р.А.
  • Фролкова Е.Г.
RU2214359C1
US 7217946 B2, 15.05.2007
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
CN 102496563 A, 13.06.2012.

RU 2 503 084 C1

Авторы

Гурович Борис Аронович

Приходько Кирилл Евгеньевич

Даты

2013-12-27Публикация

2012-08-09Подача