СПОСОБ ВОСПРОИЗВЕДЕНИЯ ТЕРМОМЕХАНИЧЕСКОГО ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЯДЕРНОГО ВЗРЫВА НА ОБРАЗЦЫ МАТЕРИАЛОВ Российский патент 2014 года по МПК G01N33/00 

Описание патента на изобретение RU2503958C1

Изобретение относится к технике испытаний конструкционных и защитных материалов, многослойных пакетов (структур) с помощью создания кратковременных интенсивных импульсов давления высокоинтенсивным импульсным электронным пучком и может быть использовано для испытаний образцов многослойных материалов на прочность к действию рентгеновского излучения (РИ) ядерного взрыва (ЯВ).

Наибольшую опасность для образцов материалов представляет тепловое и механическое (термомеханическое) действие РИ ЯВ, которое вызывает нагрев, испарение преграды и создает при этом механический импульс давления [1, 2].

Известен способ воспроизведения механического импульса давления РИ, основанный на нанесении и подрыве тонкого слоя бризантного взрывчатого вещества (ВВ) по поверхности испытываемого образца [3]. Недостатками способа являются: трудность реализации по созданию импульса давления малой амплитуды, определяемой критической для детонации толщиной ВВ, и невозможность создания импульса давления малой длительности, соответствующей воздействию РИ.

Также известен способ имитации термомеханического действия РИ ЯВ на образцы материалов по патенту №2366947 от 11.07.2008 г. с помощью контактного закрепления взрываемой фольги на испытываемом образце и разряда импульса электрического тока на фольгу, приводящего к взрыву фольги и нагружению образца механическим импульсом давления взрывной ударной волной. При этом предварительно рассчитывают толщину сублимированного в натурном процессе слоя вещества и удаляют его с поверхности испытываемого образца любым из известных способов, затем проводят неравномерный нагрев по толщине образца контактной электронагревательной пластиной, после чего взрывают фольгу импульсом тока, что позволяет приблизить воспроизводимые условия к натурным. Недостатком данного способа является то, что он не позволяет воспроизвести импульсный объемный нагрев образцов, тем самым смоделировать подобие физических процессов в натуре и модели при формировании термомеханической нагрузки.

Наиболее близким по технической сущности является способ воспроизведения действия РИ, в котором основным условием имитации термомеханического действия является воспроизведение в облучаемых образцах материалов такого же профиля и темпа энерговыделения с помощью импульсного электронного пучка [4]. Недостаток данного способа воспроизведения состоит в том, что полное воспроизведение энерговыделения в большинстве случаев затруднено, а для многослойных (контактирующих) структур материалов невозможно. Это обусловлено разной зависимостью коэффициента поглощения излучения от атомного номера материала для электронов и РИ, так как чем больше атомный номер материала, тем сильнее он поглощает РИ, а при воздействии электронов с веществом зависимость от материала достаточно слабая [4]. Кроме того, применение данного способа в ряде случаев невозможно, так как воспроизведение профиля функции энерговыделения осуществляется подбором фильтров, которые разрушаются потоком электронов ~10 кал/см2, а формировать испарительный импульс давления в материале можно только с использованием интенсивного потока электронов более 10 кал/см2.

Технический результат предлагаемого изобретения заключается в том, что не требуется дополнительно изменять толщину нагружаемого образца путем удаления сублимированного слоя вещества, а также слоя, равного толщине лицевых отколов при натурном процессе. Эти слои в способе испаряются (откалываются) в результате взаимодействия потока электронов с поверхностью испытываемого материала (пакета материалов), а замер сообщаемого преграде механического импульса (интеграла импульса давления во времени) проводят с помощью импульсомера.

Технический результат в предлагаемом способе достигается воспроизведением создаваемой нагрузки по критерию равенства создаваемого импульса давления, что позволяет воспроизвести действительную картину термомеханического действия РИ ЯВ. При этом в способе воспроизводится одновременно нагрев облучаемого образца, унос массы мишени и ее механическое нагружение

Способ воспроизведения действия РИ с использованием электронных пучков по условию равенства создаваемого импульса давления отличается от прототипа тем, что в предлагаемом способе масса испарившегося материала преграды, величина и длительность импульса давления будут соответствовать воспроизводимому воздействию. В предлагаемом способе, реализующем объемный нагрев, возможно создание широкого диапазона импульсов давления изменением параметров электронного пучка, при этом величина импульса контролируется импульсомером.

Схема реализации предлагаемого способа представлена на фиг.1, где показаны: 1 - импульсный ускоритель электронов, 2 - поток электронов, 3 - мишень импульсомера, 4 - образец материала, 5 - измерительный преобразователь импульсомера, 6 - регистратор.

Способ реализуется следующим образом.

Испытываемый образец материала (структуры) устанавливают на мишень импульсомера, облучают образец высокоинтенсивным импульсным пучком электронов с требуемыми параметрами для создания термомеханических эффектов за счет поглощения в материале энергии и замеряют импульс давления, воспроизводимый в этом варианте. Импульс давления замеряется импульсомером.

Реализация данного способа проводилась с использованием установки «Кальмар» РНЦ «Курчатовский институт». Используемая моделирующая установка представляет собой ускоритель электронов и реализует способ воспроизведения по критерию равенства создаваемого импульса давления (фото образца материала после нагружения представлено на фиг.2).

Предлагаемый способ воспроизведения термомеханического действия РИ ЯВ позволяет оценить прочность образцов конструкционных материалов в условиях, максимально приближенных к требуемым, а именно:

- связать воспроизводимый импульс давления с параметрами излучения (спектром, плотностью энергии и длительностью излучения) и свойствами материала (плотностью и энергией сублимации);

- воспроизвести импульсный объемный нагрев в испытываемом материале;

- создать испарительный импульс давления, равный формирующемуся при действии РИ;

- создать ударно-волновые процессы от механического импульса давления, распространяющиеся по испытываемой преграде.

Источники информации

1. Грибанов В.М., Острик А.В., Слободчиков С.С. Тепловое и механическое действие рентгеновского излучения на материалы и преграды // Монография. Физика ядерного взрыва. Т.2. Действие взрыва. - М.: Наука. Физматлит, 1997. С.131-195.

2. Физика ядерного взрыва, Т.2. Действие взрыва. - М.: Наука. Физматлит, 2010. С.344-448.

3. Физика взрыва / Под ред. Орленко Л.П., Т.2. - М.: Физматлит, 2002. С.536-541.

4. Степовик А.П. Термомеханические эффекты в компонентах радиоэлектронной аппаратуры при воздействии импульсов рентгеновского и электронного излучений. Снежинск, РФЯЦ-ВНИИТФ, 2010 г., стр.245.

Похожие патенты RU2503958C1

название год авторы номер документа
СПОСОБ МОДЕЛИРОВАНИЯ ТЕРМОМЕХАНИЧЕСКОГО ВОЗДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 2022
  • Мишанов Михаил Сергеевич
  • Израилев Борис Исаакович
  • Ересько Артем Юрьевич
RU2782846C1
Способ воспроизведения теплового и механического действия рентгеновского излучения на элементы радиоэлектронной аппаратуры с помощью пучка электронов 2022
  • Потапенко Андрей Иванович
  • Ульяненков Руслан Вячеславович
  • Чепрунов Александр Александрович
  • Согоян Армен Вагоевич
  • Чумаков Александр Иннокентьевич
  • Бойченко Дмитрий Владимирович
  • Дианков Сергей Юрьевич
  • Горелов Андрей Александрович
  • Герасимов Владимир Федорович
  • Зайцева Анжела Леонидовна
RU2797883C1
СПОСОБ ВОСПРОИЗВЕДЕНИЯ ТЕРМОМЕХАНИЧЕСКОГО ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЯДЕРНОГО ВЗРЫВА НА ОБРАЗЦЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ 2012
  • Бойко Евгений Николаевич
  • Майструк Дмитрий Леонидович
  • Максимов Андрей Юрьевич
  • Потапенко Андрей Иванович
  • Ульяненков Руслан Вячеславович
  • Чепрунов Александр Александрович
RU2502996C1
СПОСОБ ИМИТАЦИИ ТЕРМОМЕХАНИЧЕСКОГО ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЯДЕРНОГО ВЗРЫВА НА ОБРАЗЦЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ 2008
  • Максимов Андрей Юрьевич
  • Осоловский Виктор Семенович
  • Потапенко Андрей Иванович
  • Слободчиков Савва Саввович
  • Чепрунов Александр Александрович
RU2366947C1
СПОСОБ ИМИТАЦИИ МЕХАНИЧЕСКОГО ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ НА ОБРАЗЦЫ РАКЕТНОЙ ТЕХНИКИ 2018
  • Григорьев Александр Николаевич
  • Павленко Александр Валериевич
  • Деменев Анатолий Степанович
  • Карнаухов Евгений Игоревич
RU2682969C1
Стенд для испытаний конструкций летательных аппаратов на совместное действие тепловых и механический нагрузок 2022
  • Чепрунов Александр Александрович
  • Кузьменко Артём Юрьевич
  • Острик Афанасий Викторович
RU2789669C1
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ ТЕМПЕРАТУРЫ В КОНСТРУКЦИОННЫХ МАТЕРИАЛАХ 2012
  • Гирин Юрий Валерьевич
  • Слободчиков Савва Савич
  • Потапенко Андрей Иванович
  • Ульяненков Руслан Вячеславович
  • Чепрунов Александр Александрович
RU2521217C1
Ударная труба совместного термомеханического действия 2022
  • Боталов Дмитрий Яковлевич
  • Кузьменко Артём Юрьевич
  • Чепрунов Александр Александрович
RU2788508C1
СПОСОБ АТОМНО-АБСОРБЦИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Корепанов В.И.
  • Лисицын В.М.
  • Олешко В.И.
RU2157988C2
Гелиоустановка для испытания материалов 2021
  • Ковтун Александр Феодосьевич
  • Перцев Сергей Федорович
  • Бурушенков Сергей Иванович
RU2779610C1

Иллюстрации к изобретению RU 2 503 958 C1

Реферат патента 2014 года СПОСОБ ВОСПРОИЗВЕДЕНИЯ ТЕРМОМЕХАНИЧЕСКОГО ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЯДЕРНОГО ВЗРЫВА НА ОБРАЗЦЫ МАТЕРИАЛОВ

Использование: для испытаний образцов многослойных материалов на прочность к действию рентгеновского излучения (РИ) ядерного взрыва (ЯВ). Сущность: испытываемый образец материала устанавливают на мишень импульсомера, облучают образец потоком электронов по критерию равенства импульса давления, сообщаемого преграде из конструкционного материала действием потока электронов и рентгеновского излучения, и замеряют импульс давления. Технический результат: обеспечение возможности оценки прочности образцов конструкционных материалов в условиях, максимально приближенных к требуемым. 2 ил.

Формула изобретения RU 2 503 958 C1

Способ воспроизведения термомеханического действия рентгеновского излучения ядерного взрыва на образцы материалов, включающий облучение материала высокоинтенсивным импульсным пучком электронов, отличающийся тем, что испытываемый образец материала устанавливают на мишень импульсомера, облучают образец потоком электронов по критерию равенства импульса давления, сообщаемого преграде из конструкционного материала действием потока электронов и рентгеновского излучения, и замеряют импульс давления.

Документы, цитированные в отчете о поиске Патент 2014 года RU2503958C1

Степовик А.П
Термомеханические эффекты в компонентах радиоэлектронной аппаратуры при воздействии импульсов рентгеновского и электронного излучений, РФЯЦ-ВНИИТФ, Снежинск, 2010, с.245
СПОСОБ ИМИТАЦИИ ТЕРМОМЕХАНИЧЕСКОГО ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЯДЕРНОГО ВЗРЫВА НА ОБРАЗЦЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ 2008
  • Максимов Андрей Юрьевич
  • Осоловский Виктор Семенович
  • Потапенко Андрей Иванович
  • Слободчиков Савва Саввович
  • Чепрунов Александр Александрович
RU2366947C1
Способ испытания образцов материалов на термомеханическую прочность 1987
  • Агафонов Виктор Александрович
  • Камротов Владимир Михайлович
  • Поспелов Дмитрий Алексеевич
  • Суханов Ядыкарь Ахметгалиевич
  • Яневский Владимир Демьянович
SU1446531A1
Способ термомеханических испытаний материалов 1986
  • Одинокова Ольга Анатольевна
  • Одиноков Андрей Валерьевич
  • Толмачев Владимир Тимофеевич
SU1343286A1
KR 20000026953 A, 15.05.2000
СПОСОБ КОНТРОЛЯ КАНАЛОВ ОХЛАЖДЕНИЯ ЛОПАТОК ТУРБОМАШИНЫ 2002
  • Морозов Г.А.
  • Привалова Ю.Т.
  • Фотяхетдинов Б.Ф.
  • Снытников Д.Г.
  • Кучеревский А.П.
RU2235303C1
US 5993058 A, 30.11.1999.

RU 2 503 958 C1

Авторы

Демидов Борис Алексеевич

Ефремов Владимир Петрович

Потапенко Андрей Иванович

Чепрунов Александр Александрович

Даты

2014-01-10Публикация

2012-08-08Подача