ВОЗДУХОЗАБОРНИК АВИАЦИОННОГО ДВИГАТЕЛЯ С ТОЛКАЮЩИМИ ВОЗДУШНЫМИ ВИНТАМИ, НЕ ЗАКЛЮЧЕННЫМИ В ОБТЕКАТЕЛЬ Российский патент 2014 года по МПК B64D27/14 

Описание патента на изобретение RU2507126C2

Настоящее изобретение касается воздухозаборника авиационного двигателя, в частности авиационного двигателя с толкающими воздушными винтами, не заключенными в обтекатель (на английском языке “open-rotor pusher” или “pusher unducted fan”).

Двигатель этого типа содержит две турбины противоположного вращения, каждая из которых неподвижно соединена во вращении с воздушным винтом, находящимся снаружи гондолы двигателя, при этом оба винта установлены коаксиально друг за другом на находящемся ниже по потоку конце двигателя.

Этот двигатель крепят на самолете при помощи пилона, который проходит по существу радиально относительно продольной оси двигателя, внутренний конец которой соединен с находящимся выше по потоку концом гондолы двигателя, то есть с воздухозаборником этого двигателя.

Пилон должен находиться на достаточном осевом расстоянии от винтов и от находящегося выше по потоку конца или передней кромки воздухозаборника, в частности, из соображений аэродинамики. В известных технических решениях воздухозаборник двигателя необходимо удлинить в осевом направлении для обеспечения соединения пилона с воздухозаборником и с двигателем, что приводит к значительному увеличению массы гондолы и к лобовому сопротивлению, создаваемому этой гондолой во время работы.

Как правило, в известных технических решениях воздухозаборник двигателя с толкающими воздушными винтами, не заключенными в обтекатель, является, в основном, осесимметричным, то есть его передняя кромка вписана в плоскость, перпендикулярную к оси двигателя. Осесимметричный воздухозаборник имеет постоянное соотношение L/D по своей окружности, при этом L является локальной длиной воздухозаборника, измеренной параллельно оси двигателя между точкой передней кромки и плоскостью, проходящей на уровне входного колеса двигателя, и D является внутренним диаметром воздухозаборника на уровне этого входного колеса.

Если воздухозаборник не является осесимметричным, его передняя кромка образует приблизительно плоскую поверхность, называемую сечением захвата (на английском языке “hilite” или “high light”). Для этого типа воздухозаборника определяют общую длину воздухозаборника, которая равна расстоянию между поперечной плоскостью на уровне входного колеса двигателя и точкой пересечения между плоскостью захвата воздухозаборника и осью двигателя.

Например, известны воздухозаборники авиационного двигателя скошенного типа (на английском языке “scarf”), плоскость захвата которых имеет ярко выраженный наклон относительно продольной оси двигателя, при этом нижняя часть воздухозаборника выступает в осевом направлении выше по потоку, относительно его верхней части. Воздухозаборник этого типа определяется «общим» соотношением L/D (общая длина к диаметру) и имеет «локальное» соотношение L/D (локальная длина к диаметру), которое меняется линейно на окружности воздухозаборника.

Это особая форма скошенного воздухозаборника в основном предназначена для ограничения шума, создаваемого двигателем выше по потоку, в направлении земли. Действительно, нижняя часть большей длины скошенного воздухозаборника позволяет отражать и отклонять вверх большую часть шума, исходящего от двигателя в направлении выше по потоку во время работы. Как правило, этот тип двигателя крепят под крылом самолета при помощи пилона, который соединен с воздухозаборником на уровне его верхней части меньшей длины.

Настоящее изобретение призвано предложить простое, эффективное и экономичное решение вышеуказанных проблем, связанных с соединением пилона с воздухозаборником авиационного двигателя с толкающими воздушными винтами, не заключенными в обтекатель.

В этой связи, объектом настоящего изобретения является воздухозаборник авиационного двигателя с толкающими воздушными винтами, не заключенными в обтекатель, предназначенный для соединения с фюзеляжем самолета при помощи пилона, отличающийся тем, что локальная длина воздухозаборника, измеренная параллельно оси двигателя между точкой передней кромки воздухозаборника и поперечной плоскостью, находящейся на уровне входного колеса компрессора двигателя, больше в зоне воздухозаборника, соединенной с пилоном, и меньше в зоне воздухозаборника, противоположной пилону.

Локальная длина воздухозаборника в соответствии с настоящим изобретением меняется на окружности воздухозаборника и является максимальной в зоне, соединенной с пилоном, и минимальной в противоположной зоне, в отличие от известных решений, согласно которым верхняя часть меньшей длины скошенного воздухозаборника соединена с пилоном крепления. Форму и размеры зоны воздухозаборника, соединенной с пилоном, оптимизируют в зависимости от размеров пилона, тогда как форму и размеры остальной части воздухозаборника оптимизируют независимо от этого пилона таким образом, чтобы ограничить массу воздухозаборника и лобовое сопротивление, создаваемое гондолой двигателя во время работы.

Изменение локальной длины воздухозаборника является нелинейным на окружности воздухозаборника. В отличие от известных решений, сечение захвата воздухозаборника не является плоским, и невозможно определить длину воздухозаборника в соответствии с настоящим изобретением «общим» соотношением L/D.

Предпочтительно «локальное» соотношение L/D воздухозаборника меняется примерно между 2,5 и 0,9 между зоной, соединенной с пилоном, и противоположной зоной воздухозаборника, при этом L является локальной длиной воздухозаборника, и D является его внутренним диаметром, при этом L и D измеряют, как указано было выше.

Предпочтительно в направлении, перпендикулярном к средней плоскости, проходящей через ось пилона и через ось двигателя, передняя кромка воздухозаборника имеет контур по существу в виде двугранного угла. В вершине двугранный угол заключен, например, приблизительно между 90 и 175°. Вершина двугранного угла может иметь закругленную вогнутую форму со стороны раскрыва двугранного угла. Стороны двугранного угла могут быть по существу прямолинейными или изогнутыми, вогнутыми или выпуклыми.

Предпочтительно воздухозаборник является симметричным относительно средней плоскости, проходящей через ось пилона и через ось двигателя. Передняя кромка воздухозаборника в соответствии с настоящим изобретением образует при этом два двугранных угла, расположенных по обе стороны от этой средней плоскости и соединенных закруглениями.

Стороны, находящиеся выше по потоку, этих двух двугранных углов проходят в первой плоскости воздухозаборника, которая имеет наклон по отношению к оси двигателя, а стороны, находящиеся ниже по потоку, двугранных углов проходят во второй плоскости воздухозаборника, имеющей больший наклон к оси двигателя. Эти две плоскости являются пересекающимися, при этом линия пересечения этих двух плоскостей проходит по существу на уровне вершин двугранных углов. Таким образом, воздухозаборник в соответствии с настоящим изобретением ограничен двумя плоскостями воздухозаборника в отличие от известного воздухозаборника, который ограничен только одной плоскостью.

Согласно другом отличительному признаку изобретения, воздухозаборник содержит осевой выступ, при этом пилон предназначен, чтобы проходить по существу в осевом направлении и радиально относительно оси двигателя, начиная от этого выступа воздухозаборника. Форма и размеры этого выступа определены в зависимости от формы и размеров пилона. Этот выступ может также служить для установки других крупногабаритных агрегатов двигателя.

Передняя кромка и/или задняя кромка пилона могут иметь наклон под углом, заключенным примерно между 10 и 35° относительно поперечной плоскости.

Объектом изобретения является также авиационный двигатель с толкающими воздушными винтами, не заключенными в обтекатель, содержащий описанный выше воздухозаборник.

Объектом изобретения является также самолет, отличающийся тем, что содержит два или более двигателей вышеуказанного типа, причем эти двигатели закреплены при помощи пилонов на задней части фюзеляжа самолета по обе стороне от этого фюзеляжа. Если самолет содержит два двигателя, предпочтительно пилон крепления каждого двигателя имеет наклон под углом, заключенным между 5 и 45° и, например, примерно 20° относительно горизонтальной плоскости, проходящей по существу на уровне конца пилона, соединенного с фюзеляжем. Если самолет содержит дополнительный двигатель, пилон крепления этого двигателя может находиться по существу в вертикальной плоскости. Этот третий двигатель может быть установлен над фюзеляжем самолета.

Настоящее изобретение и его другие подробности, отличительные признаки и преимущества будут более очевидны из нижеследующего описания, представленного в качестве не ограничительного примера, со ссылками на прилагаемые чертежи, на которых:

Фиг. 1 - схематичный вид в осевом разрезе двигателя с толкающими воздушными винтами, не заключенными в обтекатель.

Фиг. 2 - схематичный вид в перспективе самолета, оборудованного двумя двигателями с толкающими воздушными винтами, не заключенными в обтекатель, в соответствии с настоящим изобретением.

Фиг. 3 - увеличенный вид одного из двигателей, показанных на фиг. 2.

Фиг. 4 - схематичный вид в перспективе гондолы и пилона двигателя, показанного на фиг. 3.

Фиг. 5 - схематичный частичный увеличенный вид сбоку гондолы и пилона, показанных на фиг. 4.

Обратимся сначала к фиг. 1, на которой показан авиационный двигатель 10 с толкающими воздушными винтами, не заключенными в обтекатель, при этом двигатель 10 содержит газотурбинную силовую установку, охваченную по существу осесимметричной гондолой 12, находящийся выше по потоку конец которой образует воздухозаборник 13.

От части, находящейся выше по потоку, до части, находящейся ниже по потоку, в направлении течения газов внутри газотурбинной силовой установки газотурбинная силовая установка содержит компрессор 14, камеру 16 сгорания, находящуюся выше по потоку турбину 18 высокого давления и две находящиеся ниже по потоку турбины 20, 22 низкого давления противоположного вращения, то есть вращающиеся в противоположных направлениях вокруг продольной оси А двигателя.

Каждая находящаяся ниже по потоку турбина 20, 22 неподвижно соединена во вращении с наружным воздушным винтом 24, 26, который проходит по существу радиально снаружи гондолы 12.

Воздушный поток 28, который заходит в воздухозаборник 13, проходит в компрессор 14, где он сжимается, затем смешивается с топливом и сгорает в камере 16 сгорания, при этом газообразные продукты горения выбрасываются в турбины и приводят во вращение винты 26, 28, которые обеспечивают основную часть тяги двигателя. Газообразные продукты сгорания 30, выходящие из турбин 20, 22, выбрасываются через выходное сопло 32, увеличивая тягу двигателя.

Воздушные винты 24, 26 расположены вблизи находящегося ниже по потоку конца двигателя и называются толкающими в отличие от наружных воздушных винтов, которые, будучи расположенными выше по потоку от двигателя, называются тянущими.

Этот тип двигателя соединяют с частью самолета, такой как фюзеляж, через пилон 34, который проходит по существу радиально по отношению к оси А снаружи гондолы 12 и который должен находиться на достаточном осевом расстоянии Х1 от передних кромок лопастей находящегося выше по потоку винта 24 и на достаточном осевом расстоянии Х2 от передней кромки воздухозаборника, в частности, из соображений аэродинамики. В известных решениях необходимо удлинять воздухозаборник 13 в осевом направлении для обеспечения соединения пилона 34 с двигателем.

В примере, представленном на фиг. 1, воздухозаборник 13, показанный сплошной линией, имеет оптимальную минимальную длину для обеспечения, в частности, направления воздуха к компрессору 16, тогда как воздухозаборник 13', показанный пунктирной линией, удлинен для обеспечения соединения пилона 34 с двигателем 10. Однако удлинение воздухозаборника приводит к значительному увеличению массы двигателя и лобового сопротивления, создаваемого им во время полета.

Воздухозаборник 13 двигателя выполнен профилированным, и его находящийся выше по потоку конец или передняя кромка 38 имеет в сечении закругленную выпуклую форму.

Воздухозаборник авиационного двигателя может быть, в частности, определен «локальным» соотношением L/D, которое в представленном примере является постоянным на всей окружности воздухозаборника. D является внутренним диаметром воздухозаборника 13, измеренным на уровне первого колеса или входного колеса компрессора 14, а L является локальной длиной этого воздухозаборника, измеренной параллельно оси А между точкой передней кромки 38 и поперечной плоскостью Р, находящейся на уровне входного колеса компрессора 14. В данном случае воздухозаборник 13 является осесимметричным, и все точки передней кромки 38 находятся в одной поперечной плоскости Р1 (или Р2 в случае воздухозаборника 13'), называемой плоскостью или сечением захвата воздуха.

Показанный сплошной линией воздухозаборник 13 имеет длину L1 (измеренную между Р и Р1) и определен соотношением L1/D, а показанный пунктиром воздухозаборник 13' имеет длину L2 (измеренную между Р и Р2) и определен соотношением L2/D.

Изобретение позволяет устранить вышеуказанные проблемы, связанные с удлинением воздухозаборника двигателя, благодаря воздухозаборнику, соотношение L/D которого не является постоянным, а меняется нелинейно на окружности воздухозаборника, при этом зона воздухозаборника большей длины соединена с пилоном.

На фиг. 2-5 показан предпочтительный вариант выполнения изобретения, в котором элементы, описанные со ссылками на фиг. 1, обозначены теми же цифровыми позициями, увеличенными на сто.

Самолет 140, показанный на фиг. 1, оборудован двумя двигателями 110 с толкающими воздушными винтами, не заключенными в обтекатель, причем эти двигатели закреплены при помощи пилонов 134 на задней части фюзеляжа 141 самолета по обе стороны от этого фюзеляжа.

Гондола 112 каждого двигателя содержит на своем находящемся выше по потоку конце воздухозаборник 113 в соответствии с настоящим изобретением, который содержит осевой выступ 142 соединения с пилоном 134. Этот пилон 134 проходит по существу радиально по отношению к оси А двигателя от выступа 142 воздухозаборника наружу до фюзеляжа 141 самолета. Таким образом, выступ 142 воздухозаборника находится со стороны фюзеляжа 141 самолета. Пилон 134 наклонен под углом α, заключенным между 5 и 45°, например, приблизительно 20° относительно горизонтальной плоскости, проходящей по существу на уровне конца пилона 134, соединенного с фюзеляжем 141.

Выступ 142 имеет общую треугольную или трапециевидную форму, вершина или малое основание которой находится выше по потоку и (большое) основание которой находится ниже по потоку. Находящееся ниже по потоку основание выступа 142 проходит в угловом направлении вокруг оси А под углом, меньшим или равным примерно 180°.

Этот выступ 142 образует зону большей осевой длины воздухозаборника, и его длина, измеренная между вышеуказанной плоскостью Р и поперечной плоскостью Р2', проходящей на уровне находящегося выше по потоку конца выступа, обозначена Lmax. Эта длина Lmax по существу равна длине L2 воздухозаборника 13', показанного на фиг. 1, где этот воздухозаборник 13' удлинен для обеспечения соединения пилона 34 с двигателем.

Длина Lmax позволяет вычислить максимальное значение соотношения L/D воздухозаборника, которое равно Lmax/D и составляет, например, приблизительно 2,5.

Выступ 142 соединен с по существу кольцевым участком 144 воздухозаборника, который проходит вокруг оси А и определяет зону меньшей длины воздухозаборника. Этот участок 144 диаметрально противоположен выступу 142. Длина этого участка 144, измеренная между плоскостью Р и поперечной плоскостью Р', проходящей на уровне находящегося ниже по потоку конца этого участка, обозначена Lmin (при этом находящийся ниже по потоку конец участка 144 диаметрально противоположен находящемуся выше по потоку концу выступа 142). Эта длина Lmin по существу равна длине L1 воздухозаборника 13, показанного на фиг. 1, то есть оптимальному минимальному значению этого воздухозаборника, определяемому независимо от пилона.

Длина Lmin позволяет вычислить минимальное значение соотношения L/D воздухозаборника, которое равно Lmin/D и составляет, например, приблизительно 0,9.

Если смотреть на воздухозаборник 113 сбоку или в направлении, перпендикулярном к средней плоскости, проходящей через ось А двигателя и ось пилона 134, как в случае, показанном на фиг.5, передняя кромка 138 образует по обе стороны от оси А двугранный угол с относительно большим углом раскрыва β, то есть превышающим 90°. Этот угол β в представленном примере составляет 120-150°.

Таким образом, по обе стороны от средней плоскости передняя кромка 138 воздухозаборника образует множество разных длин L', L” воздухозаборника, находящихся между Lmin и Lmax. Эти длины позволяют менять соотношение L/D воздухозаборника на всей его окружности. В отличие от известных решений изменение этого соотношения не является линейным (случай, когда передняя кромка проходит в одной и той же единственной наклонной плоскости воздухозаборника), а, наоборот, является нелинейным и, например, приблизительно гиперболическим или параболическим. Эта особая конфигурация передней кромки 138 позволяет образовать, по меньшей мере, две плоскости воздухозаборника.

В примере, показанном на фиг. 5, передняя кромка 138 воздухозаборника образует две пересекающиеся плоскости Р3, Р4, имеющие наклон относительно оси А. Первая находящаяся выше по потоку плоскость Р3 образована частью передней кромки выступа 142 (или находящимися выше по потоку сторонами вышеуказанных двугранных углов) и наклонена под углом, заключенным между приблизительно 15 и 50º относительно оси А. Вторая находящаяся ниже по потоку плоскость Р4 образована частью передней кромки участка 144 воздухозаборника (или находящимися ниже по потоку сторонами двугранных углов) и наклонена под углом примерно 70-90° относительно оси А. Эти две плоскости Р3, Р4 пересекаются по существу на уровне зон соединения между выступом 142 и кольцевым участком 144 воздухозаборника.

Как показано также на фиг. 5, зона 146 соединения между воздухозаборником 113 и передней кромкой пилона 134 находится в поперечной плоскости, которая проходит между поперечными плоскостями Р1' и P2'.

Как показано также на фиг. 6, передняя кромка 238 воздухозаборника 213 образует по обе стороны от оси А двугранный угол с углом раскрыва β', например, заключенным приблизительно между 90 и 175°. Этот угол β' в представленном примере приблизительно равен 170°.

В данном случае передняя кромка 250 пилона 234 наклонена относительно плоскости, перпендикулярной к оси А двигателя, под углом γ, заключенным примерно между 10 и 35° и предпочтительно 20°. Задняя кромка 252 пилона 234 тоже наклонена относительно плоскости, перпендикулярной к оси А, под углом γ', заключенным примерно между 10 и 35° и предпочтительно 20°. Значения углов γ и γ' могут быть одинаковыми или разными.

Кроме того, пилон крепления двигателя на самолете может быть наклонен относительно радиальной плоскости, проходящей через ось двигателя.

В варианте выполнения изобретения осевой выступ воздухозаборника позволяет установить крупногабаритное оборудование двигателя, отличное от пилона.

Похожие патенты RU2507126C2

название год авторы номер документа
БЕСПИЛОТНЫЙ ТРАНСЗВУКОВОЙ САМОЛЕТ-ВЕРТОЛЕТ 2018
  • Дуров Дмитрий Сергеевич
RU2711451C1
БЕСПИЛОТНЫЙ РЕАКТИВНЫЙ САМОЛЕТ-ВЕРТОЛЕТ 2018
  • Дуров Дмитрий Сергеевич
RU2699513C1
САМОЛЕТ 1995
  • Климов В.Т.
  • Пухов А.А.
  • Макаров А.А.
  • Черноусов В.И.
  • Солозобов В.И.
  • Зеленов И.В.
  • Гальперин С.Б.
RU2102279C1
БЕСПИЛОТНЫЙ АВИАЦИОННЫЙ КОМПЛЕКС 2016
  • Дуров Дмитрий Сергеевич
RU2643063C2
САМОЛЕТ "СОКОЛ" 1999
  • Дыненков В.С.
RU2146210C1
КРИОГЕННЫЙ ТУРБОЭЛЕКТРИЧЕСКИЙ САМОЛЕТ КОРОТКОГО ВЗЛЕТА И ПОСАДКИ 2013
  • Дуров Дмитрий Сергеевич
RU2534676C1
КОМПЛЕКС АДАПТИВНЫЙ РАКЕТНО-АВИАЦИОННЫЙ 2019
  • Дуров Дмитрий Сергеевич
RU2720592C1
МНОГОВИНТОВОЙ СКОРОСТНОЙ ВЕРТОЛЕТ-САМОЛЕТ 2017
  • Дуров Дмитрий Сергеевич
RU2658736C1
СИЛОВАЯ УСТАНОВКА ЛЕТАТЕЛЬНОГО АППАРАТА, СОДЕРЖАЩАЯ СОЕДИНИТЕЛЬНЫЙ АЭРОДИНАМИЧЕСКИЙ ОБТЕКАТЕЛЬ, СМОНТИРОВАННЫЙ НА ДВУХ ОТДЕЛЬНЫХ ЭЛЕМЕНТАХ 2007
  • Рош Фредерик
RU2433070C2
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС С БЕСПИЛОТНЫМ УДАРНЫМ ВЕРТОЛЕТОМ-САМОЛЕТОМ 2017
  • Дуров Дмитрий Сергеевич
RU2674742C1

Иллюстрации к изобретению RU 2 507 126 C2

Реферат патента 2014 года ВОЗДУХОЗАБОРНИК АВИАЦИОННОГО ДВИГАТЕЛЯ С ТОЛКАЮЩИМИ ВОЗДУШНЫМИ ВИНТАМИ, НЕ ЗАКЛЮЧЕННЫМИ В ОБТЕКАТЕЛЬ

Изобретение относится к области авиации, более конкретно к воздухозаборнику авиационного двигателя. Воздухозаборник (113) предназначен для соединения с фюзеляжем (141) самолета при помощи пилона (134), при этом локальная длина этого воздухозаборника, измеренная параллельно оси (А) двигателя между точкой передней кромки (138) воздухозаборника и поперечной плоскостью (Р), находящейся на уровне входного колеса компрессора двигателя, больше (Lmax) в зоне (142) воздухозаборника, соединенной с пилоном, и меньше (Lmin) в зоне воздухозаборника, противоположной пилону. Технический результат заключается в упрощении конструкции воздухозаборника. 3 н. и 8 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 507 126 C2

1. Воздухозаборник (113) авиационного двигателя с толкающими воздушными винтами, не заключенными в обтекатель, предназначенный для соединения с фюзеляжем (141) самолета при помощи пилона (134), отличающийся тем, что локальная длина воздухозаборника, измеренная параллельно оси (А) двигателя между точкой передней кромки (138) воздухозаборника и поперечной плоскостью (Р), находящейся на уровне входного колеса компрессора двигателя, больше в зоне (142) воздухозаборника, соединенной с пилоном, и меньше в зоне воздухозаборника, противоположной пилону.

2. Воздухозаборник по п.1, отличающийся тем, что соотношение L/D меняется примерно между 2,5 и 0,9 между зоной (142) воздухозаборника, соединенной с пилоном (134), и противоположной зоной воздухозаборника, при этом L является локальной длиной воздухозаборника, и D является его внутренним диаметром, измеренным на уровне входного колеса компрессора двигателя.

3. Воздухозаборник по п.1, отличающийся тем, что в направлении, перпендикулярном к средней плоскости, проходящей через ось пилона (134) и через ось (А) двигателя, передняя кромка (138) воздухозаборника имеет контур по существу в виде двугранного угла.

4. Воздухозаборник по п.3, отличающийся тем, что угол (β',β) в вершине двугранного угла заключен между 90 и 175°.

5. Воздухозаборник по п.3, отличающийся тем, что вершина двугранного угла имеет закругленную вогнутую форму со стороны раскрыва двугранного угла.

6. Воздухозаборник по п.1, отличающийся тем, что содержит осевой выступ (142) в направлении выше по потоку, при этом пилон (134) предназначен, чтобы проходить по существу радиально относительно оси (А) двигателя, начиная от этого выступа.

7. Воздухозаборник по п.1, отличающийся тем, что является симметричным относительно средней плоскости, проходящей через ось пилона (134) и через ось (А) двигателя.

8. Воздухозаборник по п.1, отличающийся тем, что передняя кромка (250) и/или задняя кромка (252) пилона (234) наклонены под углом (γ), заключенным примерно между 10 и 35° относительно поперечной плоскости.

9. Авиационный двигатель (110) с толкающими воздушными винтами, не заключенными в обтекатель, отличающийся тем, что содержит воздухозаборник (113) по п.1.

10. Самолет (140), отличающийся тем, что содержит, по меньшей мере, два двигателя по п.9, причем эти два двигателя (110) закреплены при помощи пилонов (134) на задней части фюзеляжа (141) самолета по обе стороны от этого фюзеляжа.

11. Самолет по п.10, отличающийся тем, что содержит третий двигатель, закрепленный при помощи пилона на задней части фюзеляжа самолета, причем этот пилон проходит, по существу, вертикально над фюзеляжем.

Документы, цитированные в отчете о поиске Патент 2014 года RU2507126C2

FR 2892705 A, 04.05.2007
US 4953812 A, 04.09.1990
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
US 2007176052 A1, 02.08.2007
СИЛОВАЯ УСТАНОВКА ДЛЯ САМОЛЕТА КВВП 1991
  • Поль Майкл Бевилакуа[Us]
  • Поль Ноултон Шамперт[Us]
RU2108941C1

RU 2 507 126 C2

Авторы

Бенсилум Стефан Эмманюэль Даниель

Даты

2014-02-20Публикация

2009-11-09Подача