ПАРАМЕТРИЧЕСКИЙ РАССЕИВАТЕЛЬ - МАРКЕР С НЕЛИНЕЙНЫМ ФОРМИРОВАНИЕМ СИНХРОСИГНАЛОВ Российский патент 2014 года по МПК G01S13/75 

Описание патента на изобретение RU2507537C2

Изобретение относится к поисковым устройствам, которые обнаруживают объекты, предварительно снабженные нелинейными пассивными радиоотражающими маркерами в виде параметрического рассеивателя.

Известен по [Радиокомплекс розыска маркеров, патент RU 2108596 С1], радиокомплекс розыска маркеров. Радиокомплекс позволяет решать задачу обнаружения объектов, в частности людей, маркированных с помощью пассивных нелинейных маркеров-ответчиков, в качестве которых используются параметрические рассеиватели. Способ состоит в том, что на объекте поиска предварительно размещается параметрический рассеиватель. Область пространства, в которой может находиться объект поиска, облучается зондирующим сигналом на частоте f, принимается рассеянный маркером сигнал на частоте субгармоники, равной 0,5f. В случае превышения порога обнаружения принимается решение о наличии в зоне обнаружения объекта поиска.

Данное устройство обладает существенным недостатком, а именно не достаточной эффективностью, поскольку либо нет возможности использовать импульсный зондирующий сигнал, либо не обеспечивается когерентный прием рассеянного сигнала. Это связано с тем, что при возбуждении каждого радиоимпульса, рассеянного маркером сигнала на частоте субгармоники, возможны два равновероятных значения фазы, отличающиеся на π [Горбачев П.А. Формирование сигналов системой пассивных субгармонических рассеивателей // Радиотехника и электроника, 1995, т. 40, №11, стр.1606-1610.]. В результате рассеянный на субгармонике сигнал не когерентен, даже при когерентном зондирующем сигнале.

Указанные недостатки преодолены в обнаружителе параметрических рассеивателей, известном по [Ларцов С.В. Зондирующий сигнал для обнаружения параметрических рассеивателей // «Радиотехника», 2000, N5, стр.8-12]. Обнаружитель параметрических рассеивателей позволяет решать задачу применения когерентного приема при обнаружении объектов, маркированных с помощью маркеров параметрических рассеивателей. Работа обнаружителя параметрических рассеивателей заключается в том, что на объекте поиска предварительно размещается одноконтурный параметрический рассеиватель с частотой параметрической генерации, равной половине частоты зондирующего сигнала, область пространства, в которой может находиться объект поиска, облучается зондирующим сигналом, формирующим в процессе нелинейного рассеяния от параметрического рассеивателя последовательность пачек узкополосных когерентных радиоимпульсов рассеянного сигнала, при этом каждый радиоимпульс соответствует символу выбранного закона кодирования, представляющего собой бинарную последовательность, элементы которой соответствуют, отличающимся на π, значениям фазы высокочастотного заполнения радиоимпульсов, для этого зондирующий сигнал включает последовательность пачек узкополосных когерентных прямоугольных радиоимпульсов сигнала накачки с частотой высокочастотного заполнения f и длительностью радиоимпульсов τ, кроме того зондирующий сигнал включает последовательность узкополосных когерентных синхронизирующих радиоимпульсов с частотой высокочастотного заполнения 0,5f и длительностью радиоимпульса τ1, при этом τ1 существенно меньше τ, фаза высокочастотного заполнения синхронизирующего радиоимпульса соответствует текущему порядковому символу выбранного закона манипуляции, а передний фронт синхронизирующего радиоимпульса совпадает с передним фронтом радиоимпульса накачки либо опережает его на время не превышающее τ1, при этом производится когерентное накопление по алгоритму, обеспечивающему максимальный уровень когерентного накопления, соответствующего выбранному закону манипуляции, при превышении порога обнаружения принимается решение о наличии в зоне обнаружебния объекта поиска.

Обнаружитель параметрических рассеивателей позволяет обеспечивать когерентное накопление сигнала в приемном устройстве, однако при его реализации для обнаружения параметрических рассеивателей используются синхронизирующие радиоимпульсы на частоте 0,5f, которые являются когерентной помехой радиоприему.

Этот недостаток устранен в обнаружителе параметрических рассеивателей с нелинейным формированием синхросигналов, известном по [Бабанов Н.Ю., Корсаков А.С. и др. Способ обнаружения одноконтурных или двухконтурных параметрических рассеивателей // реферат заявки на выдачу патента RU 2009118092 А, дата публикации 20.11.2010]. В обнаружителе параметрических рассеивателей с нелинейным формированием синхросигналов синхронизирующие сигналы на частоте 0,5f формируются непосредственно в параметрическом рассеивателе в результате нелинейного преобразования на нелинейной емкости параметрического рассеивателя. Для этого в спектре зондирующего сигнала кроме сигнала на частоте накачки f излучается один или два дополнительных сигнала на частотах f1 и f2. При этом, одна из частот нелинейного преобразования зондирующего сигнала должна быть равна частоте генерации параметрического рассеивателя: nf±mf1±kf2=0,5f, где n, m, k могут принимать целые значения от 0 до 2.

В качестве прототипа выбран известный по [Нелинейный пассивный маркер - параметрический рассеиватель, патент RU 2336538 С2] параметрический рассеиватель-маркер с нелинейным формированием синхросигналов, состоящий из нелинейного параметрического рассеивателя в виде антенной системы, подключенной к параметрическому генератору. Данный параметрический рассеиватель-маркер, в частности, может быть использован для обнаружителей с нелинейным формированием синхросигналов.

Недостатком прототипа является то, что антенная система этого параметрического рассеивателя-маркера с нелинейным формированием синхросигналов должна быть сконструирована и настроена так, чтобы кроме сигнала на частоте накачки f и сигнала на частоте параметрической генерации 0,5f на параметрический генератор поступали один или два сигнала на частотах f1 и f2, что всегда ведет к снижению эффективности этой антенной системы. Кроме того, наличие на нелинейной емкости параметрического генератора кроме сигнала на частоте накачки f еще одного или двух сигналов на частотах f1 и f2 с большой интенсивностью может привести к нежелательным нелинейным эффектам блокирования и соответственно снижению или даже срыву параметрической генерации. При этом условия нелинейного формирования синхронизирующих сигналов предполагают использование неэффективного нелинейного преобразования на нелинейной емкости параметрического генератора. В результате коэффициент нелинейного преобразования будет существенно ниже своего потенциального максимума, что будет требовать использования дополнительных сигналов с высоким уровнем интенсивности, по крайней мере таким же, как сигнал накачки. Другими словами, совмещение на одном нелинейном элементе двух нелинейных процессов разной природы: параметрической генерации субгармоники и нелинейного формирования синхросигналов, хотя и вполне возможно физически, скорее всего, сильно затруднит одновременное обеспечение их эффективности.

В изобретении поставлена задача разработки конструкции параметрического рассеивателя, которая позволила бы реализовать преимущества нелинейного способа формирования синхросигналов, а именно частотной селекции ответного сигнала от помех, при обнаружении одноконтурных параметрических рассеивателей. Для этого должно быть обеспечено, чтобы одновременное протекающие в параметрическом рассеивателе два нелинейных процесса: параметрическая генерация субгармоники и нелинейное формирование синхросигналов, не препятствовали бы друг другу и могли быть независимо оптимизированы.

Недостатки прототипа устраняются в предлагаемом параметрическом рассеивателе-маркере с нелинейным формированием синхросигналов, состоящем из нелинейного параметрического рассеивателя в виде антенной системы, подключенной к параметрическому генератору, при этом в его конструкцию включен нелинейный рассеиватель, состоящий из антенны и нелинейного элемента, причем частота нелинейного продукта, для рассеяния которого предназначен нелинейный рассеиватель, равна частоте параметрической генерации параметрического генератора.

Суть изобретения заключается в том, что при условии включения в конструкцию параметрического рассеивателя-маркера дополнительного нелинейного рассеивателя и излучения зондирующего сигнала, в спектре которого кроме сигнала на частоте накачки f излучается один или два дополнительных сигналов на частотах f1 и f2, появляется возможность обеспечения одновременного и эффективного протекания двух нелинейных процессов: параметрической генерации субгармоники и нелинейного формирования синхросигналов. При этом обеспечивается возможность оптимальной настройки антенной системы параметрического рассеивателя на частоты накачки f и параметрической генерации 0,5f, а параметрический генератор может быть защищен от эффектов блокирования на основе частотной селекции. В то же время, нелинейное формирование синхросигналов будет производится независимо на нелинейном рассеивателе и может быть выполнено тоже оптимально с точки зрения оптимизации антенн нелинейного рассеивателя, и на его частоту нелинейного рассеяния 0,5f, и на частоты, которые участвуют в формировании этого нелинейного продукта.

Предлагаемый параметрический рассеиватель - маркер с нелинейным формированием синхросигналов может быть реализован в качестве маркера в составе обнаружителя одноконтурных параметрических рассеивателей. При этом дополнительный сигнал излучается на частоте 0,25f, то есть в четыре раза меньше частоты сигнала накачки f. Синхронизирующий сигнал является второй гармоникой дополнительного сигнала. Соответственно частота, на которой происходит синхронизация равна: 0,5f=2×0,25f.

Структурная схема обнаружителя одноконтурных параметрических рассеивателей представлена фиг.1. Элементы: 1 - генератор синусоидального сигнала, 2-умножитель частоты в четыре раза, 3 - фазовый модулятор. 4 - амплитудный модулятор, 5 - генератор опорных импульсов, 6 - формирователь, 7, 8 - высокочастотные усилители, 9, 10, 11 - антенны, 12 - высокочастотный усилитель, 13 - аналого-цифровой преобразователь, 14-сигнальный процессор и 15 - индикатор конструктивно связаны и - образуют обнаружитель 16. Элементы: 17 - параметрический рассеиватель и 18 - нелинейный рассеиватель так же конструктивно связаны и образуют параметрический рассеиватель - маркер с нелинейной синхронизацией - 19.

Сигнальные выходы 1 и 2 генератора синусоидального сигнала 1 соединены с входом с умножителя частоты в четыре раза 2 и сигнальным входом 1 фазового модулятора 3. Умножитель частоты в четыре раза 2 соединен с сигнальным входом 1 амплитудного модулятора 4. Выход амплитудного модулятора 4 соединен с входом высокочастотного усилителя 7. Выход высокочастотного усилителя 7 соединен со входом антенны 10.

Выход фазового модулятора 3 соединен с входом высокочастотного усилителя 8. Выход высокочастотного усилителя 8 соединен СВЧ трактом со входом антенны 9.

Генератор опорных импульсов 5 соединен с входом формирователя 6.

Выход 1 формирователя 6 соединен с управляющим входом 2 амплитудного модулятора 4, выход 2 формирователя 6 соединен с управляющим входом 2 фазового модулятора 3. Выход 3 формирователя 6 соединен с вспомогательным входом 2 сигнального процессора 14.

Антенна 11 соединена со входом высокочастотного усилителя 12, настроенном на частоту f/2. Выход высокочастотного усилителя 12 соединен со входом аналого-цифрового преобразователя 13. Выход аналого-цифрового преобразователя 13 соединен с сигнальным входом 1 сигнального процессора 14, выход сигнального процессора 14 соединен со входом индикатора 16.

В зоне облучения антенн 9, 10, 11 расположен параметрический рассеиватель-маркер с нелинейным формированием синхросигналов 19, состоящий из объединенных конструктивно параметрического рассеивателя 17 и нелинейного рассеивателя 18.

Обнаружитель одноконтурных параметрических рассеивателей работает следующим образом.

Генератор синусоидального сигнала 1 генерирует непрерывный сигнал на частоте f/4 на своих выходах 1 и 2. С выхода 2 этот сигнал поступает на вход умножителя 2, где его частота увеличивается в четыре раза. На выходе умножителя 2 формируется сигнал на частоте f, который поступает на сигнальный вход 1 амплитудного модулятора 4.

Одновременно сигнал на частоте f/4 с выхода 1 синусоидального сигнала 1 поступает на сигнальный вход 1 фазового модулятора 3.

Одновременно генератор опорных импульсов 5 формирует на своем выходе тактовую последовательность, поступающую на вход формирователя 6. Указанная тактовая последовательность синхронизирует работу излучающей части обнаружителя 16, ее условная осциллограмма представлена на фиг.2, кривая 1.

Эта тактовая последовательность преобразуется на выходе 1 формирователя 6 в последовательность видеоимпульсов управления амплитудным модулятором 4, а на выходе 2 в последовательность видеоимпульсов управления фазовым модулятором 3.

На фиг.2, кривая 2 представлена условная осциллограмма одного импульса последовательности видеоимпульсов управления фазовым модулятором 3: На фиг.2, кривая 3 представлена условная осциллограмма видеоимпульса последовательности видеоимпульсов управления амплитудным модулятором 4. При этом видеоимпульс последовательности видеоимпульсов управления амплитудным модулятором 4 содержит информацию о начале и конце излучения импульсов сигнала накачки, А импульс последовательности видеоимпульсов управления фазовым модулятором 3 содержит информацию о значении текущего символа выбранного бинарного закона кодирования: положительная и отрицательная полярности соответствуют противоположным символам. Задержка между фронтами видеоимпульсов последовательности видеоимпульсов управления амплитудным модулятором и последовательности видеоимпульсов управления фазовым модулятором связана с временем, необходимым на переходные процессы.

Сигналы управления амплитудным модулятором 4 формируются на выходе 1 формирователя 6 в виде следующих друг за другом через определенный период времени видеоимпульсов. Все сигналы управления имеют одинаковую длительность и полярность. Позиция переднего фронта видеоимпульса управления амплитудным модулятором 4 несколько отстает от переднего фронта видеоимпульса управления фазовым модулятором 3. Позиция заднего фронта видеоимпульса управления амплитудным модулятором 4 определяется положением переднего фронта и соответствует заданной длительности τ радиоимпульса накачки.

Сигналы управления фазовым модулятором 3 формируются на выходе 2 формирователя 6 и поступают на управляющий вход 2 фазового модулятора 3. Фазовый модулятор 3 формирует сигнал в соответствии с полярностью управляющих видеоимпульсов. В результате формируется последовательность узкополосных когерентных следующих друг за другом вспомогательных радиоимпульсов с частотой высокочастотного заполнения f/4, с длительностью каждого из парных радиоимпульсов τ1, при этом τ1<<τ. Фаза каждого текущего радиоимпульса определяется выбранным законом кодирования. При этом символу «1» соответствует нулевое значение фазы, а символу «0» соответствует значение фазы, отличающееся на π/2.

На фиг.2, кривая 4 представлена условная осциллограмма одного радиоимпульса последовательности узкополосных когерентных следующих друг за другом вспомогательных радиоимпульсов.

Сформированная последовательность пачек узкополосных когерентных пар следующих друг за другом вспомогательных радиоимпульсов с частотой высокочастотного заполнения f/4 проходит через высокочастотный усилитель 8 и антенну 9, при помощи которой излучается в пространство в направлении параметрического рассеивателя-маркера с нелинейным формированием синхросигналов 19 и облучает входящий в его состав нелинейный рассеиватель 18.

На нелинейном рассеивателе 18 последовательность узкополосных когерентных следующих друг за другом вспомогательных радиоимпульсов переизлучается в виде последовательности синхронизирующих радиоимпульсов с частотой f/2, которые облучают параметрический рассеиватель 17. Условная осциллограмма одного радиоимпульса этой синхронизирующей последовательности представлена на фиг.2, кривая 5.

Одновременно сигналы управления амплитудным модулятором 4 поступают на управляющий вход 2 амплитудного модулятора 4. Амплитудный модулятор 4 в соответствии с управляющим сигналом на входе 2 формирует последовательность прямоугольных радиоимпульсов с частотой высокочастотного заполнения частоте f.

В результате формируется последовательность пачек узкополосных когерентных прямоугольных радиоимпульсов сигнала накачки с частотой высокочастотного заполнения/и длительностью радиоимпульсов τ. Этот сигнал усиливается усилителем 7 и излучается антенной 10 в направлении параметрического рассеивателя - маркера с нелинейным формированием синхросигналов 19 и облучает, входящий в его состав параметрический рассеиватель 17. Условная осциллограмма одного импульса этой последовательности представлена на фиг.2, кривая 6.

На параметрическом рассеивателе 17 наводятся радиоимпульсы сигнала накачки на частоте f, при этом к этому моменту на нем уже наведен синхронизирующий радиоимпульс на частоте f/2. В данных условиях процесс генерации сигнала на частоте f/2 перестает быть случайным и на параметрическом рассеивателе 17 формируется последовательность пачек узкополосных когерентных радиоимпульсов ответного сигнала. Каждый радиоимпульс этой последовательности соответствует символу выбранного закона кодирования, причем фаза каждого импульса данной последовательности совпадает с фазой синхронизирующего радиоимпульса. На фиг.2, кривая 7 представлена условная осциллограмма одного импульса последовательности ответного сигнала.

Радиоимпульсы рассеянного сигнала принимаются антенной 11, усиливаются высокочастотным усилителем 12 и поступают на вход аналого-цифрового преобразователя 13, где входной сигнал оцифровывается. Оцифрованный сигнал поступает на сигнальный процессор 14, где производится когерентное накопление по алгоритму, обеспечивающему максимальный уровень когерентного накопления принимаемого сигнала, соответствующего выбранному закону кодирования. Результат когерентного накопления сравнивается с порогом, при превышении которого подается сигнал на индикатор 15 об обнаружении цели.

В качестве генератора синусоидального сигнала 1 может быть использован стандартный генератор Г4-164. Умножитель 2 может быть изготовлен по [С.А. Дробов, С.И. Бычков. Радиопередающие устройства // Сов. Радио, М., 1968 г., стр.117-123]. Фазовый модулятор 3 может быть реализован по [С.А. Дробов, С.И. Бычков Радиопередающие устройства // Сов. Радио, М.1968 г., стр.329-335]. Амплитудный модулятор 4 может быть реализован по [С.А. Дробов, С.И. Бычков. Радиопередающие устройства // Сов. Радио, М., 1968 г., стр.240-277]. В качестве генератора опорных импульсов 5 может быть использован стандартный генератор Г5-28, 6 - формирователь может быть реализован по [В.Г. Гусев, Ю.М. Гусев. Электроника // М. Высшая школа, 1991, издание 2-е переработанное и дополненное, стр.489-585]. В качестве высокочастотных усилителей 7, 8 могут быть использованы усилители от стандартного генератора Г4-128. В качестве антенн 9, 10, 11 могут быть использованы антенны П6-33. В качестве высокочастотного усилителя 12 может быть использован стандартный малошумящий усилитель МАХ 2640. В качестве аналого-цифрового преобразователя 13 может быть использован, АЦП ZET 230. В качестве сигнального процессора 14 может быть использован сигнальный процессор TMS 320 С 2000. Алгоритм работы может быть сформирован на основе [В.И. Тихонов. Оптимальный прием сигналов. М. Радио и связь, 1983, стр.37-60]. В качестве индикатора 15 может быть использован компьютер типа Pentium 4.

Параметрический рассеиватель-17 может быть изготовлен на основе прототипа по [Нелинейный пассивный маркер - параметрический рассеиватель, патент RU 2336538 С2]. Нелинейный рассеиватель-18 может быть на основе [Н.Ю. Бабанов, С.В. Ларцов О характеристиках, необходимых для описания пространственных свойств простых нелинейных рассеивателей. Радиотехника, 2009 г., №5, стр.34-39].

Таким образом, предлагаемое техническое решение позволит проводить более эффективный поиск параметрических рассеивателей-маркеров, так как позволяет обеспечить одновременное и эффективное протекание в заявляемом устройстве двух нелинейных процессов: параметрической генерации и нелинейного формирования синхросигналов на частоте параметрической генерации.

Похожие патенты RU2507537C2

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ ОДНОКОНТУРНЫХ ПАРАМЕТРИЧЕСКИХ РАССЕИВАТЕЛЕЙ С НЕЛИНЕЙНЫМ ФОРМИРОВАНИЕМ СИНХРОНИЗИРУЮЩЕГО СИГНАЛА 2011
  • Бабанов Николай Юрьевич
RU2496122C2
СПОСОБ ОБНАРУЖЕНИЯ ОДНОКОНТУРНЫХ ПАРАМЕТРИЧЕСКИХ РАССЕИВАТЕЛЕЙ 2009
  • Бабанов Николай Юрьевич
  • Корсаков Александр Сергеевич
  • Ларцов Сергей Викторович
  • Ларцов Иван Сергеевич
RU2413242C2
СПОСОБ ОБНАРУЖЕНИЯ ДВУХКОНТУРНЫХ ПАРАМЕТРИЧЕСКИХ РАССЕИВАТЕЛЕЙ 2010
  • Бабанов Николай Юрьевич
  • Корсаков Александр Сергеевич
  • Ларцов Сергей Викторович
  • Ларцов Иван Сергеевич
RU2455659C2
СПОСОБ ОБНАРУЖЕНИЯ ПАРАМЕТРИЧЕСКИХ РАССЕИВАТЕЛЕЙ 2009
  • Бабанов Николай Юрьевич
  • Корсаков Александр Сергеевич
  • Ларцов Сергей Викторович
  • Ларцов Иван Сергеевич
RU2408033C1
СПОСОБ ОБНАРУЖЕНИЯ МАРКЕРОВ - ПАРАМЕТРИЧЕСКИХ РАССЕИВАТЕЛЕЙ 2010
  • Бабанов Николай Юрьевич
  • Колтин Михаил Александрович
  • Ларцов Сергей Викторович
  • Пужайло Александр Федорович
  • Спиридович Евгений Апполинарьевич
  • Червова Альбина Александровна
RU2441253C1
СПОСОБ ОБНАРУЖЕНИЯ ОБЪЕКТОВ, МАРКИРОВАННЫХ ПАРАМЕТРИЧЕСКИМИ РАССЕИВАТЕЛЯМИ 2011
  • Бабанов Николай Юрьевич
RU2487366C2
СПОСОБ ОБНАРУЖЕНИЯ ШИРОКОПОЛОСНЫХ ПАРАМЕТРИЧЕСКИХ РАССЕИВАТЕЛЕЙ 2013
  • Бабанов Николай Юрьевич
  • Ларцов Сергей Викторович
  • Самарин Валерий Павлович
  • Клюев Андрей Викторович
RU2532258C1
ПАРАМЕТРИЧЕСКИЙ ЭХО-ИМПУЛЬСНЫЙ ЛОКАТОР 1996
  • Волощенко В.Ю.
RU2133047C1
НЕЛИНЕЙНЫЙ ПАССИВНЫЙ МАРКЕР - ПАРАМЕТРИЧЕСКИЙ РАССЕИВАТЕЛЬ 2006
  • Ларцов Сергей Викторович
RU2336538C2
СПОСОБ И УСТРОЙСТВО МАРКИРОВКИ ОБЪЕКТОВ ПРИ ПОМОЩИ ЭЛЕКТРОННОГО НОМЕРА-ПЛОМБЫ, ОСУЩЕСТВЛЯЮЩЕЙ ИНФОРМАЦИОННЫЙ ОБМЕН СО СЧИТЫВАЮЩИМ УСТРОЙСТВОМ С ИСПОЛЬЗОВАНИЕМ СЕКРЕТНОГО КОДИРОВАНИЯ НА ОСНОВЕ АСИММЕТРИЧНЫХ КЛЮЧЕЙ 2009
  • Бабанов Николай Юрьевич
  • Ларцов Сергей Викторович
  • Ларцов Иван Сергеевич
RU2408896C1

Иллюстрации к изобретению RU 2 507 537 C2

Реферат патента 2014 года ПАРАМЕТРИЧЕСКИЙ РАССЕИВАТЕЛЬ - МАРКЕР С НЕЛИНЕЙНЫМ ФОРМИРОВАНИЕМ СИНХРОСИГНАЛОВ

Изобретение относится к устройствам обнаружения пассивных маркеров-ответчиков, являющимся вторичными источниками электромагнитного излучения, в частности параметрическими рассеивателями. Для применения когерентного накопления при обнаружении одноконтурных параметрических рассеивателей, одновременно с излучением на частоте f радиоимпульсов накачки, в параметрическом рассеивателе формируется синхронизирующий сигнал на частоте f/2. Для обеспечения частотной селекции применяется способ нелинейного формирования синхросигналов, при котором синхронизирующие сигналы на частоте 0,5f формируются непосредственно в параметрическом рассеивателе в результате нелинейного преобразования. Для этого в спектре зондирующего сигнала кроме сигнала на частоте накачки f излучается один или два дополнительных сигнала на частотах f1 и f2. При этом, одна из частот нелинейного преобразования зондирующего сигнала должна быть равна частоте генерации параметрического рассеивателя: nf±mf1±kf2=0,5f, где n, m, k могут принимать целые значения от 0 до 2. В предлагаемом решении нелинейное преобразование предлагается производить на нелинейном рассеивателе, включенном в конструкцию параметрического рассеивателя-маркера. Достигаемый технический результат - устранение когерентной помехи радиоприему. 2 ил.

Формула изобретения RU 2 507 537 C2

Параметрический рассеиватель - маркер с нелинейным формированием синхросигналов, состоящий из нелинейного параметрического рассеивателя в виде антенной системы, подключенной к параметрическому генератору, отличающийся тем, что в его конструкцию включен нелинейный рассеиватель, состоящий из антенны и нелинейного элемента, причем частота нелинейного продукта, для рассеяния которого предназначен нелинейный рассеиватель, равна частоте параметрической генерации параметрического генератора.

Документы, цитированные в отчете о поиске Патент 2014 года RU2507537C2

НЕЛИНЕЙНЫЙ ПАССИВНЫЙ МАРКЕР - ПАРАМЕТРИЧЕСКИЙ РАССЕИВАТЕЛЬ 2006
  • Ларцов Сергей Викторович
RU2336538C2
RU 94036233 A1, 20.07.1996
СПОСОБ ОБНАРУЖЕНИЯ ОБЪЕКТА (ВАРИАНТЫ) 1999
  • Гайворонская С.А.
  • Дмитриев В.Г.
  • Сергеев В.И.
  • Чесноков Ю.С.
RU2145424C1
US 4757315 A, 22.07.1988
WO 2010034933 A1, 01.04.2010
US 2005207587 A1, 22.09.2005
Резервированное запоминающее устройство 1989
  • Мельников Вячеслав Алексеевич
  • Трещалин Анатолий Серафимович
SU1640745A1

RU 2 507 537 C2

Авторы

Бабанов Николай Юрьевич

Ларцов Сергей Викторович

Даты

2014-02-20Публикация

2011-02-15Подача