МНОГОЛУЧЕВАЯ АНТЕННАЯ РЕШЕТКА СИСТЕМЫ СПУТНИКОВОЙ СВЯЗИ Российский патент 2014 года по МПК H01Q21/00 

Описание патента на изобретение RU2509399C1

Изобретение относится к антенной технике и может быть использовано для минимизации количества излучателей в многолучевой антенной решетке (MAP) бортовой системы спутниковой связи. Основным требованием, предъявляемым к таким MAP, являются минимальные габариты и минимальное количество излучателей N для обеспечения требуемого коэффициента усиления (ХУ) G в заданном секторе обзора. Известны бортовые многолучевые двухзеркальные антенны, используемые в системах спутниковой связи [1, 2, 3]. Однако такие антенны не обеспечивают требуемый для глобальной космической связи сектор обзора земной поверхности (конус с углом при вершине ψобз=8,7° фиг.1) со спутника, находящегося на геостационарной орбите (ГСО). Кроме того, эти антенны имеют повышенные габариты и невысокую эффективность g=Gλ2/4πS (далее по отношению к апертуре S только основного зеркала), не превышающую 0,3 на краю сектора обзора.

Известны также многолучевые антенные решетки с аналоговым и цифровым методом формирования лучей [4, 5]. Такие MAP позволяют обеспечить заданный сектор обзора. Однако при большом количестве излучателей в АР диаграммообразующая схема (ДОС) в аналоговой MAP оказывается чрезвычайно громоздкой и сложной, а в цифровых MAP с большим количеством излучателей М=104-105 пока не хватает вычислительных возможностей процессора, используемого для формирования лучей. Так специализированный модуль цифровой ДОС в проекте TSUNAMI рассчитан на обработку комплексных выходов 128 каналов с временем синтезированиия ДН цифровой антенной решетки (ЦАР) 250 нс [6].

Возможным решением поставленной задачи является разработка многолучевой антенной решетки, состоящей из многолучевых крупноапертурных излучателей (КАИ), обеспечивающих максимальный КУ в рассматриваемом секторе обзора. Наиболее близким к заявленному изобретению является MAP, описанная в [7]. Излучатель этой системы состоит из облучателя в виде 16-элементной антенной решетки с квадратной апертурой и отражающего зеркала. Однако так как периферийные излучатели значительно вынесены из фокуса зеркала, то это приводит к амплитудно-фазовым ошибкам поля в раскрыве зеркала и соответственно к значительным искажениям диаграммы направленности излучателя и снижению его коэффициента усиления, особенно на краю сектора обзора.

Целью изобретения является разработка многолучевой антенной системы, состоящей из N многолучевых КАИ, каждый из которых обеспечивает максимальный КУ в коническом секторе обзора 8,7°. Используемый М-лучевой КАИ в многолучевой решетке из N таких излучателей при цифровой схеме формирования N лучей позволяет минимизировать общее число излучателей при заданном КУ в секторе обзора и обеспечить формирование MN лучей в секторе обзора.

Поставленная задача решается тем, что в многолучевой антенной решетке системы спутниковой связи, состоящей из излучателей, каждый из которых содержит зеркальную параболическую осесимметричную антенну и облучатель, выполненный в виде системы открытых концов круглых волноводов. Согласно заявленному изобретению радиус апертуры зеркальной параболической осесимметричной антенны составляет R0=5,125λ, где λ - длина волны, и ее фокусное расстояние f0=3,813λ выбрано из условия перекрытия 7-лучевой диаграммой направленности (ДН) антенны сектора обзора ψ0=8,7°, с сектором обзора ψ0=8,7° и с максимальным коэффициентом усиления (КУ). В облучателе КАИ f0=3,813λ выбрано из условия перекрытия 7-лучевой диаграммой направленности (ДН) антенны сектора обзора ψ0=8,7°, из семи плотно расположенных круглых волноводов с диэлектрическим заполнением ε=1,6 и радиусом каждого волновода а=0,3λ. В предлагаемой многолучевой антенной решетке системы спутниковой связи ко входам облучателя КАИ подсоединяются диаграммообразующие схемы, обеспечивающие для каждого m-го луча коэффициент передачи Sm,l с каждого l-го на каждый m-ный вход по закону:

S m , l = c ( F ¯ m ( θ , ϕ ) e ¯ ( θ , ϕ ) ) * G m ( θ 0 m , ϕ 0 m ,

m=1,…,n,

l=1,…,n.

где с - произвольная константа,

n - количество волноводов в облучателе КАИ,

G m ( θ 0 m , ϕ 0 m ) - КУ по m-му лучу в направлении максимума ( θ 0 m , ϕ 0 m ) ,

F ¯ m ( θ , ϕ ) - нормированная относительно максимума ( θ 0 m , ϕ 0 m ) комплексная ДН по m-му входу, определяемая для всех m в одной и той же системе координат,

e ¯ ( θ , ϕ ) - единичный вектор, определяющий поляризацию поля в направлении ( θ , ϕ ) , по которой обеспечивается максимум КУ,

* - обозначает знак комплексного сопряжения.

В предложенной многолучевой антенной решетке системы спутниковой связи излучатели образуют либо шестигранную плоскую антенную решетку, либо плоскую антенную решетку в виде параллелограмма с минимальным количеством излучателей N, определяемым в зависимости по соотношению

N = ] G М А Р G max min [ + 1 ,

где GМАР - требуемый КУ MAP в секторе обзора,

G max min - минимальное значение максимального КУ 7-лучевой антенной решетки в секторе обзора,

А ] [ - обозначают взятие целой части, соседние излучатели повернуты в плоскости MAP относительно друг друга на ±30°.

Изобретение поясняется фигурами и таблицей: фиг.1 - к вопросу определения минимального количества отдельных волноводов в облучателе θ0, фиг.2a - крупноапертурный зеркальный излучатель, фиг.2б - система волноводных облучателей и используемая система координат, фиг.3а, б - к определению минимального количества волноводов в облучателе, фиг.4а, б - ДН зеркального излучателя с облучателем, изображенным на фиг.2б (интервал углов 0≤θ≤180° соответствует плоскости φ=0, а интервал углов -180°≤θ<0 соответствует плоскости φ=180°), фиг.5 - возможные схемы построения MAP, фиг.6а, б - зависимость максимального КУ зеркального излучателя с облучателем, изображенным на фиг.5б в секторе обзора, фиг.7а, б - возможные конфигурации апертуры MAP, Таблица 1 - зависимость коэффициента усиления MAP от количества элементов в ней.

Поставленная цель достигается тем, что КИА выполняется в виде 7-лучевой антенной решетки (М=7), состоящей из зеркальной параболической осесиметричной антенны с оптимальным радиусом R0=5,125λ и фокусным расстоянием f0=3,813λ и облучателя, состоящего из 7-и близко расположенных круглых волноводов радиуса а=0,3λ и толщиной t=0,036λ, заполненных диэлектриком (ε=1,6) в используемой системе координат (фиг.2б). Радиус и фокусное расстояние были определенны итерационным методом из условия оптимального перекрытия сектора обзора 8,7° 7-лучевой ДН, а диэлектрическая проницаемость ε была выбрана из условия того, что уровень пересечения лучей должен быть равен примерно -4,6 дБ. Если уровень пересечения ниже -4,6 дБ, то в его направлении будет формироваться значительный провал и КУ КАИ, если же уровень пересечения больше -4,6 дБ, то возрастает взаимная связь между лучами ДН КАИ, что также приводит к падению КУ.

При независимом возбуждении каждого из n=1…7 волноводов формируется многолучевая ДН, состоящая из 7-и лучей, обеспечивающих обзор конического сектора пространства с углом при вершине 8,7° (фиг.1).

Количество волноводов в облучателе выбирается из условия равенства или превышения суммарного телесного угла, занимаемого n лучами, заданного телесного угла обзора:

Ω о б з m = 1 n min Ω q m                                                                                     ( 1 )

Учитывая, что Ωобз=2π(1-cos(ψобз)) и Ω q m = 2 π ( 1 cos ( θ q m ) ) ( ф и г .1 ) , а

θ q m = K q λ 4 R cos ( θ 0 m ) + 1 2 cos ( θ 0 m ) ,

где Kq - коэффициент пропорциональности,

θ 0 m - направление максимума m-ной ДН,

выражение (1) примет вид:

m = 1 n min ( 1 cos ( K q λ 4 R cos ( θ 0 m ) + 1 2 cos ( θ 0 m ) ) ) 1 cos ( ψ о б з ) ,                                        ( 2 )

где nmin - минимальное количество волноводов в облучателе. На фиг.3 представлены расчетные зависимости коэффициента Кq и nmin от уровня пересечения q соседних лучей. Таким образом, при уровне пересечения лучей -12÷-13 дБ минимальное количество волноводов в облучателе nmin=3. При уровне пересечения -4,6 дБ÷-5 дБ nmin=7. Для больших уровней пересечения nmin увеличивается, и, в частности, при q=-3÷-3,5 дБ nmin=13. Однако при использовании 13-элементного облучателя существенно возрастает затенение зеркала облучателем. В связи с этим целесообразно применять 7-элементный облучатель, изображенный на фиг 2б.

На фиг.2 представлено схематическое изображение КИА (фиг.2а), а на фиг.2б - схема облучателя, состоящего из 7-и круглых волноводов. На фиг.4 представлены амплитудные ДН КАИ в масштабе КУ при независимом возбуждении каждого из n=1…7 входов облучателя и рельеф КУ в секторе обзора соответственно в плоскостях XOY (рис.4а) и ХОZ. (рис.4б). Соответствующая зависимость максимального КУ в секторе обзора при независимом возбуждении только одного из волноводов в облучателе показана пунктирной линией на фиг.6.

Для обеспечения максимально возможного КУ в секторе обзора необходимо использовать одновременное возбуждение всех волноводов, что достигается за счет введения ДОС 1 (фиг.5). ДОС 1 обеспечивает оптимальное возбуждение каждого из 7-и круглых волноводов по закону:

U п а д  m Н ( θ , ϕ ) = c ( F ¯ m ( θ , ϕ ) e ¯ ( θ , ϕ ) ) * G m ( θ 0 m , ϕ 0 m ) ,  m = 1 , ,n .,                (3)

где U п а д  m Н - нормированные амплитуды падающей волны Н11 в m-ном волноводе, с - произвольная константа, F ¯ m ( θ , ϕ ) - нормированная по максимуму векторная комплексная ДН ( | F ¯ m ( θ 0 m , ϕ 0 m ) | = 1 ) , через e ¯ ( θ , ϕ ) обозначен единичный вектор в направлении (θ,φ), * - обозначает знак комплексного сопряжения, G m ( θ 0 m , ϕ 0 m ) - КУ КАИ относительно w-го входа в направлении ( θ 0 m , ϕ 0 m ) максимума ДН, G m ( θ , ϕ ) = | ( F ¯ m ( θ , ϕ ) e ¯ ( θ , ϕ ) | 2 G m ( θ 0 m , ϕ 0 m )

Максимальная величина КУ 7-лучевой антенной решетки Gmax(θ,φ) в произвольном направлении (θ,φ) при оптимальном возбуждении (3), определяется соотношением:

G max ( θ , ϕ ) = m = 1 7 G m ( θ , ϕ ) .                                                                  ( 4 ) Зависимости Gmax(θ,φ) в плоскостях XOY и XOZ показаны на фиг.6 сплошной линией. Сравнение рельефа КУ при независимом возбуждении и рельефа КУ при возбуждении (3) показывает, что при схеме возбуждения с ДОС 1 КАИ имеет более высокий КУ в секторе обзора.

ДОС 1 может быть как аналоговой, так и цифровой.

Для формирования остронаправленных многолучевых ДН в MAP из крупноапертурных 7-лучевых излучателей используется ДОС 2 (фиг.5).

Возможные конфигурации MAP из минимального количества КАИ, обеспечивающие заданный КУ MAP, представляют собой либо плоскую шестигранную антенную решетку (фиг.7а), либо антенную решетку в виде параллелограмма (фиг.7б).

Для N одинаковых и одинаково расположенных в антенной решетке 7-лучевых КАИ коэффициент усиления MAP GМАР(θ,φ) в произвольном направлении (θ,φ) определяется соотношением:

G М А Р ( θ , ϕ ) = N G max ( θ , ϕ ) ,                                                                          ( 5 )

Соответственно минимальное количество излучателей Nmin выбирают исходя из требуемого КУ MAP GМАР в секторе обзора

N min = ] G М А Р G max min [ + 1 ,

где G max min - минимальное значение максимального КУ 7-лучевой антенной решетки в секторе обзора.

Зависимость величины Nmin от отношения G М А Р G max min для шестигранной антенной решетки представлена в таблице 1.

Для одинаково расположенных одинаковых КАИ в соответствии с фиг.6 и соотношением (5) в плоскости XOZ происходит более значительное снижение КУ на краю сектора обзора. Для выравнивания рельефа КУ MAP на краю сектора обзора выбирают такую азимутальную ориентацию соседних излучателей, при которой в двух соседних излучателях плоскости с большим снижением КУ и с меньшим совмещаются (фиг.7б).

Таким образом, по сравнению с аналогом, описанном в [7], удалось уменьшить амплитудно-фазовые ошибки поля в раскрыве MAP, состоящей из параболического осесимметричного зеркала и облучателя из 7-и открытых концов круглых волноводов, за счет соответствующего выбора конфигурации и размеров параболического зеркала и облучателя и тем самым уменьшить искажения в многолучевой ДН КАИ и увеличить КУ КАИ и MAP в секторе обзора 8,7°. Повышение КУ также обеспечивается применением оптимальной схемы возбуждения облучателя в КАИ с помощью ДОС 1. В результате предложена многолучевая антенная решетка системы спутниковой связи, состоящая из минимально возможного количества излучателей Nmin и позволяющая достичь требуемого КУ в заданном секторе обзора в требуемом частотном диапазоне.

Список литературы.

1. Бортовая многолучевая антенна космического ретранслятора / Н.А.Бей, В.А.Вечтомов, Е.Н.Гуркин и др. - М.: МГТУ им. Н.Э.Баумана, ISSN 0236-3933. Вестник МГТУ им. Н.Э.Баумана. Сер. «Приборостроение», 2009.

2. В.А.Калошин, Е.В.Фролова. Моделирование офсетной двухзеркальной апланатической антенны типа Грегори. - Журнал радиоэлектроники, 2007, №6.

3. В.А.Калошин, Е.В.Фролова. Моделирование офсетной двухзеркальной апланатической антенны типа Кассегрена. - Журнал радиоэлектроники, 2007 №7.

4. Проблемы антенной техники / Под ред. Л.Д.Бахраха, Д.И.Воскресенского. - М.: Радио и связь, 1989. - 368 с. (142 с.)

5. Антенны и устройства СВЧ, проектирование ФАР / Под редакцией Д.И.Воскресенского. - 2-е издание дополненное и переработанное. М.: Радио и связь, 1994. - 592 с.

6. Слюсар В.И. Цифровое формирование луча в системах связи. - Электроника: НТБ, 2001, №1.

7. Слюсар В.И. Цифровые антенные решетки в системах мобильной спутниковой связи. - Первая миля, 2008, №5.

Многолучевая антенная решетка системы спутниковой связи.

Таблица 1 Зависимость коэффициента усиления MAP от количества элементов в ней N 7 19 37 61 91 127 169 217 271 331 G М А Р G 1 ( θ 0 , φ 0 ) [ д Б ] 8,45 12,78 15,68 17,85 19,59 21,03 22,27 23,36 24,33 25,19 N 397 469 547 631 721 817 919 1027 1141 1261 G М А Р G 1 ( θ 0 , φ 0 ) [ д Б ] 25,98 26,71 27,38 28 28,57 29,12 29,63 30,11 30,57 31

Похожие патенты RU2509399C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННЫХ УГЛОВЫХ КООРДИНАТ РАДИОСИГНАЛА В АМПЛИТУДНЫХ МОНОИМПУЛЬСНЫХ ПЕЛЕНГАЦИОННЫХ СИСТЕМАХ 2016
  • Бахирев Валерий Николаевич
  • Чабан Александр Викторович
RU2625349C1
ВОЛНОВАЯ АНТЕННАЯ РЕШЕТКА 2012
  • Банков Сергей Евгеньевич
RU2522909C2
МНОГОЛУЧЕВАЯ НЕАПЛАНАТИЧЕСКАЯ ГИБРИДНАЯ ЗЕРКАЛЬНАЯ АНТЕННА 2001
  • Архипов Н.С.
  • Кочетков В.А.
  • Тихонов А.В.
  • Чаплыгин И.А.
  • Щекотихин В.М.
RU2181519C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАДИОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК КРУПНОГАБАРИТНЫХ АНТЕНН ДЛЯ КОСМИЧЕСКИХ АППАРАТОВ БЕЗ ИХ НЕПОСРЕДСТВЕННЫХ ИЗМЕРЕНИЙ 2013
  • Кузовников Александр Витальевич
  • Лавров Виктор Иванович
  • Сомов Виктор Григорьевич
  • Крюков Игорь Григорьевич
RU2541206C2
СПОСОБ АДАПТИВНОЙ ГРУППОВОЙ КОМПЕНСАЦИИ ПОМЕХ СПУТНИКОВОМУ РЕТРАНСЛЯТОРУ СВЯЗИ С ГИБРИДНОЙ ЗЕРКАЛЬНОЙ АНТЕННОЙ В РЕАЛЬНОМ ВРЕМЕНИ 2020
  • Приходько Василий Владимирович
  • Косов Семен Борисович
  • Черногаев Алексей Петрович
  • Симонова Наталья Владимировна
RU2763932C1
КОМПАКТНАЯ МНОГОЛУЧЕВАЯ ЗЕРКАЛЬНАЯ АНТЕННА 2008
  • Весник Михаил Владимирович
  • Ан Джи-Хо
  • Фролова Елена Васильевна
  • Венецкий Александр Сергеевич
RU2380802C1
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА ОТРАЖАТЕЛЬНОГО ТИПА 1991
  • Толкачев А.А.
  • Левитан Б.А.
  • Ремизов Б.А.
  • Колобов В.А.
  • Маркин Г.В.
  • Шишлов А.В.
  • Шубов А.Г.
RU2048699C1
Способ пеленгации широкополосных сигналов с повышенной разрешающей способностью 2019
  • Новиков Артем Николаевич
  • Новикова Екатерина Евгеньевна
RU2752878C2
СПОСОБ ВОССТАНОВЛЕНИЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ 2020
  • Гусевский Владлен Ильич
  • Дупленкова Мария Дмитриевна
  • Никифоров Евгений Алексеевич
  • Цветкова Ольга Николаевна
  • Чеботарев Александр Семенович
RU2730051C1
Частотно-независимая активная многолучевая антенная решетка 2020
  • Бобков Николай Иванович
  • Бобков Иван Николаевич
RU2744567C1

Иллюстрации к изобретению RU 2 509 399 C1

Реферат патента 2014 года МНОГОЛУЧЕВАЯ АНТЕННАЯ РЕШЕТКА СИСТЕМЫ СПУТНИКОВОЙ СВЯЗИ

Изобретение относится к антенной технике. Технический результат - уменьшение амплитудно-фазовых ошибок поля в раскрыве многолучевой антенной решетки. Для этого многолучевая антенная система состоит из N многолучевых крупноапертурных излучателей (КАИ), каждый из которых обеспечивает максимальный КУ в коническом секторе обзора 8,7° для глобальной космической связи. Используемый М-лучевой КАИ в многолучевой решетке из N таких излучателей при цифровой схеме формирования N лучей позволяет минимизировать общее число излучателей при заданном КУ в секторе обзора и обеспечить формирование MN лучей в секторе обзора. Изобретение позволяет по сравнению с аналогами уменьшить амплитудно-фазовые ошибки поля в раскрыве многолучевой антенной решетки (MAP), состоящей из параболического осесимметричного зеркала и облучателя из 7-и открытых концов круглых волноводов, уменьшить искажения в многолучевой ДН КАИ и увеличить КУ КАИ и MAP в секторе обзора 8,7°. 3 з.п. ф-лы, 7 ил., 1 табл.

Формула изобретения RU 2 509 399 C1

1. Многолучевая антенная решетка (MAP) системы спутниковой связи, состоящая из излучателей, каждый из которых содержит зеркальную параболическую осесимметричную антенну и облучатель, выполненный в виде системы открытых концов круглых волноводов, отличающаяся тем, что радиус апертуры зеркальной параболической осесимметричной антенны составляет R0=5,125λ, где λ - длина волны, ее фокусное расстояние f0=3,813λ выбрано из условия перекрытия 7-лучевой диаграммой направленности (ДН) антенны сектора обзора ψ0=8,7°, с максимальным коэффициентом усиления (КУ), облучатель состоит из семи плотно расположенных круглых волноводов с диэлектрическим заполнением ε=1,6 и радиусом каждого волновода а=0,3λ.

2. Многолучевая антенная решетка системы спутниковой связи по п.1, отличающаяся тем, что к входам облучателя подсоединяются диаграммообразующие схемы, обеспечивающие для каждого m-го луча коэффициент передачи Sm,l с каждого l-го на каждый m-ный вход по закону:
S m , l = c ( F ¯ m ( θ , ϕ ) e ¯ ( θ , ϕ ) ) * G m ( θ 0 m , ϕ 0 m ) ,
m=1,…,7,
l=1,…,7,
где с - произвольная константа, n - количество круглых волноводов в облучателе, G m ( θ 0 m , ϕ 0 m ) - КУ по m-му лучу в направлении максимума ( θ 0 m , ϕ 0 m ) , F ¯ m ( θ , ϕ ) - нормированная относительно максимума ( θ 0 m , ϕ 0 m ) комплексная ДН по m-му входу, определяемая для всех m в одной и той же системе координат, e ¯ ( θ , ϕ ) - единичный вектор определяющий поляризацию поля в направлении ( θ , ϕ ) , по которой обеспечивается максимум КУ, * - обозначает знак комплексного сопряжения.

3. Многолучевая антенная решетка системы спутниковой связи по п.1, отличающаяся тем, что излучатели образуют шестигранную плоскую антенную решетку с минимальным количеством излучателей N, определяемым по соотношению N = ] G М А Р G max min [ + 1 , где GМАР - требуемый КУ MAP в секторе обзора, G max min - минимальное значение максимального КУ 7-лучевого излучателя в секторе обзора, а ] [ - обозначают взятие целой части, соседние излучатели повернуты в плоскости MAP относительно друг друга на ±30°.

4. Многолучевая антенная решетка системы спутниковой связи по п.1, отличающаяся тем, что с излучатели образуют плоскую решетку в виде параллелограмма, а минимальное количество излучателей определяется по соотношению N = ] G М А Р G max min [ + 1 , где ] [ - обозначают взятие целой части, G max min - минимальное значение максимального КУ 7-лучевой антенной решетки в секторе обзора, а соседние излучатели повернуты в плоскости MAP относительно друг друга на ±30°.

Документы, цитированные в отчете о поиске Патент 2014 года RU2509399C1

СЛЮСАР В.И
Цифровые антенные решетки в системах мобильной спутниковой связи
- Первая миля, 2008, № 5, с.19-20
МНОГОЛУЧЕВАЯ ЗЕРКАЛЬНАЯ АНТЕННА 2006
  • Бобков Николай Иванович
  • Вернигора Владимир Николаевич
  • Лопатько Николай Пантелеевич
  • Савеленко Анатолий Алексеевич
  • Ступин Валерий Евгеньевич
RU2336615C1
ФАЗОСДВИГАЮЩЕЕ УСТРОЙСТВО 1996
RU2099835C1
ПРИЕМОПЕРЕДАЮЩЕЕ АНТЕННОЕ УСТРОЙСТВО ДЛЯ МНОГОКАНАЛЬНОЙ СИСТЕМЫ СОТОВОЙ СВЯЗИ 2008
  • Пономарев Леонид Иванович
  • Скородумов Андрей Иванович
  • Терёхин Олег Васильевич
RU2356142C1
Многолучевая антенная решетка 1982
  • Воронин Евгений Николаевич
SU1064358A1
US 6842157 B2, 24.04.2003
US 6429816 B1, 06.08.2002.

RU 2 509 399 C1

Авторы

Пономарев Леонид Иванович

Вечтомов Виталий Аркадьевич

Терехин Олег Васильевич

Милосердов Александр Сергеевич

Даты

2014-03-10Публикация

2012-07-05Подача