СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ) Российский патент 2014 года по МПК B01D53/47 

Описание патента на изобретение RU2509595C1

Изобретение относится к области химии и биотехнологии, а именно разделению газовых смесей, и может применяться в различных отраслях промышленности, энергетики и сельского хозяйства. Особое применение способа предназначено для концентрирования водорода из биосингаза, состав которого варьируется в зависимости от условий пиролиза и сырья: Н2 (25-45%), СН4 (~1%), CO (25-42%), CO2 (10-35%), N2 (2-5%) H2S(~1). Одним из процессов разделения газовых смесей, еще ограниченно применяемым в промышленных масштабах, являются мембранное разделение и короткоцикловая адсорбция (КЦА). Мембранный процесс газоразделения достаточно эффективно применяется для получения азота из воздуха; обогащения воздуха кислородом, концентрирования водорода из смесей с содержание Н2>50%, удаления CO2 из биогаза и природного газа [Richard W. Baker. Membrane technology and application. - 2nd ed. - California, USA: John Wiley &Sons, Ltd, 2004. - 538 p.]. Процессы короткоцикловой адсорбции известны достаточно давно [Skarstrom С.W. Method and apparatus for fractionating gaseous mixtures by adsorption. US Pat. 2,944,627 (1960)] и позволяют разделять смеси газов с различной адсорбционной способностью, включая водород-содержащие газовые смеси, причем эффективность разделения экономически оправдана только при исходном содержании водорода >60% [Ritter J.A., A.D.Ebner. State-of-the-Art Adsorption and Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries // Separation Science and Technology. - 2007. - №42 (6). - С.1123-1193]. Перспективность применения описанных выше процессов принципиально оправдана тем, что в обоих случаях нет затрат на фазовые переходы (как, например, в криогенных технологиях), способы характеризуются малой энергоемкостью, безреагентностью, достаточной компактностью оборудования, достаточной простотой управления и масштабирования.

Мембранное разделение газовых смесей по принципу «диффузионной растворимости» заключается в том, что разделяемая смесь (сырье - питающий поток) приводится в контакт с одной стороной селективно проницаемой непористой мембраны, при этом проникшая через мембрану смесь (пермеат) обогащена легко-проницаемым компонентом, а непроникшая через мембрану смесь (ретентат) - обогащена труднопроницаемым компонентом.

На практике движущей силой процесса является градиент концентрации (градиент парциального давления), который достигается одним из методов по тангенциальной схеме (фиг.1):

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата при атмосферном давлении;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата вакуумированием;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при атмосферном давлении и отвода пермеата вакуумированием;

Последний из указанных методов обычно применяют в лабораторных исследованиях. Отметим, что выбор полимерной мембраны происходит чисто эмпирически - по известным газоразделительным свойствам полимера селективного слоя. Как правило, эти данные очень ограничены и не охватывают все многообразие пенетрантов (компонентов смеси), например, биосингаза; если водород-содержащие смеси содержат CO2, то и водород и CO2 (их проницаемости близки) накапливаются в пермеате и концентрирования водорода в чистом виде не происходит.

Известен способ, включающий стадию КЦА и последующее мембранное разделения для разделения смесей водорода и углеводородов (см. патент США 6,183,628, от 6 февраля 2001 года). Здесь КЦА отводится роль предконцентратора для водорода, так как водород относится к несорбируемым газам, а углеводороды - к сильносорбируемым газам. Мембраны усиливают концентрирование водорода за счет того, что мембраны являются углеводород-селективными. Отделить водород от CO2 по такой схеме не представляется возможным, поскольку при наличии в смеси CO2 этот компонент должен скапливаться в углеводородной фракции, а CO2 и H2 мембранами не разделяются и тем более такой метод не подходит к выделению водорода из биосингаза, где углеводороды не представлены.

Наиболее близким к заявленному является способ очистки газообразного водорода из газовой смеси, содержащей незначительное количество водорода, с помощью системы, включающей этап мембранного разделения и этап короткоцикловой адсорбции (КЦА). В соответствии с изобретением данная система очистки работает на одном компрессоре, который обеспечивает одновременно сжатие пермеата, обогащенного водородом, между этапом мембранного разделения и этапом КЦА (PSA) и сжатие газа регенерации, выходящего из устройства КЦА (PSA) до его рециклинга (Патент №2904821, Франция, МПК C01B 3/56, опубл. 15.02.2008).

Однако данное техническое решение не предназначено к выделению и концентрированию водорода из биосингаза (биосингаз получают при небольших давлениях), так как не оговариваются разделительные свойства мембраны: водород может концентрироваться как пермеате, так и в ретентате и, кроме того, не ясно, где будет концентрироваться CO2 как балластный компонент. Более того, не ясно, где будут концентрироваться другие компоненты биосингаза.

Задача изобретения состоит в том, чтобы обеспечить выделение водорода из биосингаза для дальнейшего использования в качестве энергоносителя, получаемого из трудно-перерабатываемой биомассы. Предлагаемый способ предполагает длительное рабочее применение, так как и мембрана и КЦА известны тем, что срок их действия без замены мембраны и/или адсорбента составляет не менее 10 лет.

Для решения указанной задачи предложены два варианта способа непрерывного выделения и концентрирования водорода из биосингаза общего состава Н2 (25-45%), СН4 (-1%), CO (25-42%), CO2 (10-35%), N2 (2-5%) H2S (~1) мембранно-сорбционным методом, включающим мембранное предконцентрирование водорода и последующее выделение водорода с помощью коротко-цикловой адсорбции.

Предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом, в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим сжатием пермеата перед блоком короткоцикловой адсорбции КЦА, при этом отводят ретентат после разделения газовой смеси на мембране с селективностью H2/CO2>1.

Также предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим отводом пермеата, и подачей ретентата в блок короткоцикловой адсорбции КЦА, при этом селективность мембраны должна быть H2/CO2<1.

На фигуре 1 показана тангенциальная схема работы мембранного модуля.

На Фигуре 2 дана зависимость концентрации H2 в пермеате от степени тбора (θ) при разделении биосингаза различными мембранами.

На Фигуре 3 дана зависимость степени извлечения (б) от степени отбора (θ) при разделении биосингаза различными мембранами.

На Фигуре 4 показана схема мембранного предконцентрирования водорода в пермеате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На Фигуре 5 показана схема мембранного предконцентрирования водорода в ретентате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На фигурах позициями обозначены:

1 - биореактор для переработки биомассы,

2, 6 - компрессор,

3 - мембранный модуль,

4 - ретентат

5 - пермеат

7 - блок КЦА,

8 - водород.

Способ осуществляется следующим образом.

В первом варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H2/CO2>1, после чего ретентат 4 отводят из мембранного блока 3, а перметат сжимают в компрессоре 6 и направляют в блок КЦА 7, где происходит концентрирование водорода с последующим отводом его потребителю 8.

Во втором варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H2/CO2<1, после чего пермеат 5 отводят из мембранного блока 3, а ретентат 4 направляют в блок КЦА 7 для дальнейшего концентрирования водорода и отвода его потребителю 8.

При реализации способа были исследованы газоразделительные свойства мембран, данные сведены в таблицу.

Таблица Вид мембраны Газ, Q, л/(м2·час·атм) GENERON® H2 He CO2 O2 SO2 H2S N2 CO CH4 C3H8 160 180 45 13,6 10,31 41 1,8 1,61 1,3 0,11 ПВТМС 2000 1800 1600 450 10001 3501 120 1501 220 40 AIR PRODUCTS® 151 151 104 22,7 47,51 14,281 3,8 6,6 6,3 7,251 СИЛАР® 440 250 2000 400 2570 1195 190 270 545 28181

Из таблицы видно, что, например, мембраны GENERON® обладают небольшой положительной селективностью Н2/CO2>1; мембраны СИЛАР - небольшой отрицательной селективностью Н2/CO2<1. В первом случае мембранный блок лучше использовать для предконцентрирования водорода в виде пермеата, а во-втором случае - в виде ретентата.

На Фиг.2 и 3 приведены примеры использования мембранного блока для предконцентрирования водорода в виде пермеата (мембраны GENERON®, ПВТМС, AIR PRODUCTS®) и виде ретентата (мембраны СИЛАР®). Видно, что в ретентате концентрация водорода может достигать минимально необходимые 50% при степенях отбора ~0.7. В других вариантах во всех случаях концентрация водорода >50%. Сравнительные зависимости построены по методике Тепляков В.В., Малых О.В., Амосова О.Л., Ястребов Р.А. Программа для ЭВМ «Расчет мембранного разделения многокомпонентных газовых смесей с использованием базы данных по мембранам с функцией расчетной оценки недостающих экспериментальных величин. Свидетельство №2011615930 от 28 июля 2011 с использованием доступных экспериментальных данных по газопроницаемости коммерческих полимерных мембран.

Таким образом, предложение позволит достичь концентрирования водорода из биосингаза с технической чистотой (до 98%) независимо от его содержания в исходном сырье в пределах 10-40% с возможностью реализации промышленного применения способа.

Похожие патенты RU2509595C1

название год авторы номер документа
ИЗВЛЕЧЕНИЕ ГАЗОВ, В ЧАСТНОСТИ НЕКОНДЕНСИРУЮЩИХСЯ ГАЗОВ, ИЗ МАССОВЫХ ПОТОКОВ, В ЧАСТНОСТИ ИЗ ПОТОКОВ ОТХОДЯЩИХ ГАЗОВ С ПРОЦЕССОВ ПОЛИМЕРИЗАЦИИ 2015
  • Витцлеб Фолькер
  • Ляйтмайр Вернер
  • Фосс Кристиан
  • Тота Акос
  • Бауэр Мартин
RU2687951C2
УСТАНОВКА КОНЦЕНТРИРОВАНИЯ И ОЧИСТКИ ГЕЛИЯ 2020
  • Курочкин Андрей Владиславович
RU2738512C1
УСТАНОВКА ДЛЯ КОНЦЕНТРИРОВАНИЯ И ОЧИСТКИ ГЕЛИЯ 2020
  • Курочкин Андрей Владиславович
RU2740992C1
Газохимическое производство водорода 2020
  • Мнушкин Игорь Анатольевич
  • Мифтахов Линар Ильдусович
RU2729790C1
АДСОРБЦИОННО-МЕМБРАННЫЙ СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВЫХ СМЕСЕЙ 2010
  • Левин Евгений Владимирович
  • Окунев Александр Юрьевич
  • Буклина Алла Васильевна
  • Зиновьев Алексей Борисович
  • Окунева Елена Алексеевна
  • Окунева Ирина Вадимовна
RU2443461C1
Способы и устройства для производства водорода 2018
  • Чжоу, Шаоцзюнь Джеймс
  • Гупта, Раджхубир П.
  • Карпентер, Джон Ривес Iii
  • Турк, Брайан С.
RU2779804C2
Комбинированный способ с использованием адсорбции при переменном давлении и мембран для извлечения гелия 2015
  • Восс Кристиан
  • Тота Акос
  • Байер Мартин
  • Енневайн Франк
RU2703218C2
УСТАНОВКА И СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ДИОКСИДА УГЛЕРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ, СОДЕРЖАЩИХ ДИОКСИД УГЛЕРОДА, С ИСПОЛЬЗОВАНИЕМ МЕМБРАННОЙ ТЕХНОЛОГИИ 2017
  • Костин Александр Игоревич
  • Самойлов Леонид Станиславович
  • Привезенцев Владимир Алексеевич
  • Вдовина Валентина Васильевна
  • Родин Сергей Дмитриевич
  • Ратькова Юлия Вячеславовна
  • Будкин Анатолий Анатольевич
RU2670171C1
УСТАНОВКА ДЛЯ РАЗДЕЛЕНИЯ УГЛЕВОДОРОДСОДЕРЖАЩЕЙ ГАЗОВОЙ СМЕСИ С ПОЛУЧЕНИЕМ ГЕЛИЯ 2020
  • Акулов Сергей Васильевич
  • Курочкин Андрей Владиславович
  • Чиркова Алена Геннадиевна
RU2741460C1
СПОСОБ ВЫДЕЛЕНИЯ ВОДОРОДА ИЗ МЕТАНА ИЛИ МЕТАНОСОДЕРЖАЩЕГО ГАЗА 2022
  • Сачков Виктор Иванович
  • Нефедов Роман Андреевич
  • Медведев Родион
  • Амеличкин Иван
RU2803731C1

Иллюстрации к изобретению RU 2 509 595 C1

Реферат патента 2014 года СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ)

Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для предконцентрирования водорода в пермеате или ретентате и последующую подачу пермеата (после дополнительного компремирования) или ретентата (без дополнительного компремирования) в блок короткоцикловой адсорбции с получением на выходе концентрата водорода. При этом мембраны с селективностью H2/CO2>1 используют для предконцентрирования водорода в виде пермеата; мембраны с селективностью H2/CO2<1 используют для предконцентрирования водорода в виде ретентата. Технический результат заключается в обеспечении возможности выделения водорода из биогаза и возможности длительного применения мембраны. 2 н.п. ф-лы, 5 ил., 1 табл.

Формула изобретения RU 2 509 595 C1

1. Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, отличающийся тем, что в качестве смеси газов используют биосинтезгаз, осуществляют его сжатие до мембранного предконцентрирования с последующим сжатием пермеата перед блоком короткоцикловой адсорбции КЦА, при этом отводят ретентат после разделения газовой смеси на мембране с селективностью Н2/CO2>1.

2. Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, отличающийся тем, что в качестве смеси газов используют биосинтезгаз, осуществляют его сжатие до мембранного предконцентрирования с последующим отводом пермеата, и подачей ретентата в блок короткоцикловой адсорбции КЦА, при этом селективность мембраны должна быть H2/CO2<1.

Документы, цитированные в отчете о поиске Патент 2014 года RU2509595C1

WO 2008017781 A2, 14.02.2008
US 20110123878 A1, 26.05.2011.

RU 2 509 595 C1

Авторы

Тепляков Владимир Васильевич

Реутов Борис Федорович

Амосова Ольга Леонидовна

Шалыгин Максим Геннадьевич

Парабин Виктор Александрович

Даты

2014-03-20Публикация

2012-09-04Подача