ЖИДКОСТНО-ГАЗОВЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ Российский патент 2014 года по МПК F02K9/62 F02K99/00 

Описание патента на изобретение RU2511877C2

Предлагаемое изобретение предназначено для использования в ракетно-космической технике в качестве корректирующей двигательной установки (КДУ) космического аппарата (КА).

Известен жидкостный реактивный двигатель с дополнительным электромагнитным разгоном рабочего тела, содержащий источник электрической энергии, кольцевую камеру сгорания, смесительную головку, тарельчатое сопло и накопитель энергии с коммутирующим устройством (Патент Российской Федерации № 2374481 по МПК: F02K99/00, 2008 г.). Этот двигатель имеет такие недостатки, как относительно высокая цена тяги, наличие двух баков для хранения топлива и окислителя. Для нормальной работы такого двигателя необходимо дозированная подача компонентов.

Известен жидкостно-газовый реактивный двигатель (ЖГРД), содержащий бак, заполненный жидким рабочим телом, с выходным отверстием в крышке, камеру и реактивное сопло, после выходного отверстия установлена капиллярная трубка, за которой находится полость двигателя, из нее рабочее тело поступает в сопло (Вопросы электромеханики. Т.109. 2009 г. В.П.Ходненко, А.В.Хромов (ФГУП «НПП ВНИИЭМ») Корректирующие двигательные установки для малого космического аппарата.). Этот двигатель выбран в качестве прототипа. В качестве топлива данного двигателя применяется гидразин.

Этот двигатель имеет более низкую цену тяги, один бак с жидким рабочим телом. Но у данного двигателя есть ряд других недостатков - невозможность регулирования в широких пределах тягу двигателя из-за особенностей применяемого топлива, относительно большое энергопотребление из-за необходимости осуществлять нагрев полости двигателя для осуществления термокаталитической реакции, а также есть такой недостаток, как токсичность применяемого топлива.

Техническим результатом заявленного изобретения является получение возможности регулирования тяги двигателя в широких пределах, снижение энергопотребления двигателя и применение экологически чистого рабочего тела.

Технический результат достигается тем, что в жидкостно-газовый реактивный двигатель, содержащий бак, заполненный жидким рабочим телом, с выходным отверстием в крышке, камеру и реактивное сопло, согласно изобретению введен регулировочный клапан с электромагнитом и пружиной, установленный в камере на выходе из бака после разделителя фаз рабочего тела, а в качестве рабочего тела используют воду.

При этом рабочую камеру предлагается снабдить устройством подогрева области, прилегающей к выходному отверстию бака.

В предлагаемом техническом решении для создания тяги используется явление парообразования, а не термокаталитическая реакция, как в прототипе.

На чертеже изображен пример конкретного выполнения заявленного реактивного двигателя.

Жидкостно-газовый реактивный двигатель состоит из бака 1, регулировочного клапана 2 с электромагнитом 3 и пружиной 4, установленного в камере 5 на выходе из бака 1 после разделителя фаз 6 рабочего тела, и сопла 7, установленного после камеры 5 и корпуса клапана 8.

Суть работы двигателя состоит в том, что рабочая жидкость из бака 1 испаряется и, пройдя по капиллярам разделителя фаз 6, поступает в камеру 5, откуда в случае поступления сигнала на электромагнит 3 пар через клапан 2 по каналам в корпусе клапана 8 поступает в сопло 7. В отсутствие сигнала на электромагните 3 пружина 4 обеспечивает поджатие клапана (автоматическое выключение двигателя). Так как давления в области перед соплом превышает давление за бортом, то возникает реактивная тяга. Двигатель может работать, пока не испариться вся жидкость в баке 1. Благодаря клапану осуществляется регулирование двигателя вплоть до полного выключения с возможностью неоднократных включений. Преимуществами данного двигателя является его низкое энергопотребление, нетоксичность топлива, невзрывоопасность, регулирование в широком диапазоне. В случае кристаллизации рабочего тела происходит падение удельного импульса и тяги, но работоспособность сохраняется, в отличие от термокаталитического двигателя. Согласно формуле (А.А.Дорофеев. Основы теории тепловых ракетных двигателей (Общая теория ракетных двигателей) МГТУ им. Н.Э.Баумана Москва 1999 г.):

W max = 2 k k 1 R T [ 1 ]

где Wmax - скорость истечения газа через сопло Лаваля в вакууме при оптимальном профиле сопла, k - показатель адиабаты водяного пара, R - газовая постоянная водяного пара, T - абсолютная температура в камере. При температуре T=273 K, Wmax достигает 1065 м/с. При диаметре клапана d=10 мм и максимальной высоте подъема x=2.5 мм площадь цилиндрической щели в клапане при его максимальном подъеме составит:

f=xdπ=7.85×10-5 м2

При температуре в 273 K давление насыщенных паров воды составляет примерно Рнп=600 Па, при этом плотность газа (если считать газ идеальным) составит:

ρ г = M r V m × P н п Р о

где Mr - молярная масса воды, Vm - молярный объем газа при н.у., Ро - давление газа при н.у. Таким образом, ρг=4.82*10-3 кг/м3. Примем, что гидравлические потери давления на клапане примерно равны давлению насыщенных потерь, тогда массовый расход через клапан составит:

Q = μ × f × ρ г × 2 × Р н п ρ г = 1.133 × 10 4 к г с

Тогда тяга двигателя составит:

F=Q×Wmax=120 мН,

что превышает тягу по сравнению с прототипом. Из формулы [1] следует, что чем выше температура, тем выше скорость истечения и как следствие выше импульс и тяга двигателя. Таким образом, при наличии больших доступных мощностей становится целесообразным установить устройство подогрева непосредственно в камеру, в область, прилегающую к выходному отверстию бака, для повышения импульса двигателя.

Литература

1. Патент Российской Федерации N 2374481, МПК F02K 99/00, 2008 г.

2. Вопросы электромеханики Т.109. 2009 г. В.П.Ходненко, А.В.Хромов (ФГУП «НПП ВНИИЭМ») Корректирующие двигательные установки для малого космического аппарата, с.30-31 (прототип).

3. А.А.Дорофеев. Основы теории тепловых ракетных двигателей (Общая теория ракетных двигателей) МГТУ им. Н.Э.Баумана Москва 1999 г.

Похожие патенты RU2511877C2

название год авторы номер документа
Корректирующая двигательная установка с электротермическим микродвигателем 2016
  • Блинов Виктор Николаевич
  • Шалай Виктор Владиирович
  • Рубан Виктор Иванович
  • Вавилов Игорь Сергеевич
  • Косицын Валерий Владимирович
  • Лукьянчик Антон Игоревич
  • Ячменев Павел Сергеевич
RU2631952C1
СИСТЕМА ВЫДАЧИ ИМПУЛЬСОВ ТЯГ 2014
  • Аксаментов Михаил Юрьевич
  • Васильев Валерий Алексеевич
  • Болтов Елисей Александрович
  • Голева Татьяна Васильевна
  • Казаков Владимир Евгеньевич
  • Макарьянц Михаил Викторович
  • Попова Ольга Петровна
  • Страмоусов Валерий Александрович
RU2560645C1
МНОГОСТУПЕНЧАТАЯ РАКЕТА-НОСИТЕЛЬ С АТОМНЫМИ РАКЕТНЫМИ ДВИГАТЕЛЯМИ 2008
  • Болотин Николай Борисович
RU2381152C1
СПОСОБ РАБОТЫ КИСЛОРОДНО-КЕРОСИНОВЫХ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ (ЖРД) И РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА 2013
  • Гапонов Валерий Дмитриевич
  • Чванов Владимир Константинович
  • Аджян Алексей Погосович
  • Левочкин Петр Сергеевич
RU2542623C1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МАЛОЙ ТЯГИ 2001
  • Наркевич Н.Н.
  • Уртминцев И.А.
  • Боцула А.А.
RU2209334C1
СИСТЕМА ЗАПУСКА КРИОГЕННОГО ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ КОСМИЧЕСКОГО ОБЪЕКТА 2011
  • Тупицын Николай Николаевич
  • Катков Руслан Эдуардович
  • Егоров Александр Михайлович
  • Киселева Ольга Валерьевна
  • Федоров Валентин Иванович
  • Туманин Евгений Николаевич
  • Рожков Михаил Викторович
RU2486113C1
МНОГОРАЗОВЫЙ ГИБРИДНЫЙ РАКЕТОНОСИТЕЛЬ КРИШТОПА (МГРК), ГИБРИДНАЯ СИЛОВАЯ УСТАНОВКА (ГСУ) ДЛЯ МГРК И СПОСОБ ФУНКЦИОНИРОВАНИЯ МГРК С ГСУ (ВАРИАНТЫ) 2022
  • Криштоп Анатолий Михайлович
RU2772596C1
ДВИГАТЕЛЬНАЯ УСТАНОВКА С РАКЕТНЫМ ДВИГАТЕЛЕМ 2019
  • Дыбой Александр Вячеславович
  • Иванов Андрей Владимирович
  • Камышев Алексей Васильевич
RU2742516C1
РАКЕТА-НОСИТЕЛЬ, ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ И СПОСОБ ЕЕ ЗАПУСКА ПРИ ВОЗВРАЩЕНИИ И СИСТЕМА ВЕРТОЛЕТНОГО ПОДХВАТА ВОЗВРАЩАЕМОЙ СТУПЕНИ 2015
  • Болотин Николай Борисович
RU2609539C1
СПОСОБ РЕГУЛИРОВАНИЯ ТЯГИ РАКЕТНОГО ДВИГАТЕЛЯ 2002
  • Ермолаев В.И.
  • Наркевич Н.Н.
  • Уртминцев И.А.
  • Левандович А.В.
RU2213878C1

Иллюстрации к изобретению RU 2 511 877 C2

Реферат патента 2014 года ЖИДКОСТНО-ГАЗОВЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и реактивное сопло. В камере жидкостно-газового реактивного двигателя установлен на выходе из бака разделитель фаз рабочего тела, после которого установлен регулировочный клапан с пружиной и электромагнитом. В ЖГРД камера снабжена устройством подогрева рабочего тела в области, прилегающей к выходному отверстию бака. Жидкостно-газовый реактивный двигатель создает реактивную тягу за счет истечения паров воды, которые образуются за счет процесса парообразования газа из жидкой фазы. Изобретение обеспечивает регулирование тяги, снижение энергопотребления двигателя и применение экологически чистого рабочего тела. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 511 877 C2

1. Жидкостно-газовый реактивный двигатель, содержащий бак, заполненный жидким рабочим телом, с выходным отверстием в крышке, камеру и реактивное сопло, отличающийся тем, что в него введен регулировочный клапан с электромагнитом и пружиной, установленный в камере на выходе из бака после разделителя фаз рабочего тела, а в качестве рабочего тела используют воду.

2. Жидкостно-газовый реактивный двигатель по п.1, отличающийся тем, что камера снабжена устройством подогрева рабочего тела в области, прилегающей к выходному отверстию бака.

Документы, цитированные в отчете о поиске Патент 2014 года RU2511877C2

ГАЗОРЕАКТИВНЫЙ ДВИГАТЕЛЬ С РЕГУЛИРУЕМОЙ ТЯГОЙ 1996
  • Виноградов В.Н.
  • Мурашко В.М.
  • Нятин А.Г.
RU2152530C1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С ДОПОЛНИТЕЛЬНЫМ ЭЛЕКТРОМАГНИТНЫМ РАЗГОНОМ РАБОЧЕГО ТЕЛА 2008
  • Ермолаев Владимир Иванович
  • Левандович Александр Викторович
  • Уртминцев Игорь Александрович
RU2374481C1
ПАРОВОДЯНОЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) 1996
  • Григорьев С.С.
  • Мосесов С.К.
RU2117176C1
US 7757476 B2, 20.07.2010
Нагревательная камера 1976
  • Берещанский Феликс Михайлович
  • Романов Лев Залманович
  • Зак Марк Герцевич
SU612918A1
JP 2004156476 A, 03.06.2004

RU 2 511 877 C2

Авторы

Протопопов Александр Андреевич

Даты

2014-04-10Публикация

2012-06-01Подача