СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С АНТИМИКРОБНЫМ ЭФФЕКТОМ Российский патент 2014 года по МПК A61L27/02 A61L27/06 A61L27/12 A61F2/28 B82B3/00 

Описание патента на изобретение RU2512714C1

Изобретение относится к медицине, а именно к ортопедической стоматологии, и может быть использовано для изготовления внутрикостных имплантатов на металлической основе.

Известен способ нанесения гидроксиапатитового покрытия на имплантат из биоинертных материалов и их сплавов, который осуществляется путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесения получаемой суспензии на металлическую поверхность, сушки и последующей термической обработки аргоно-плазменной струей при токе дуги 30-500 А, продолжительностью 0,5-2,0 мин на дистанции 40-100 мм (Пат. РФ на изобретение №2417107 МПК A61L 27/30, B05D 7/24, A61L 27/32 С1, опубл. 27.04.2011). Однако полученные биоактивные покрытия не обладают достаточной прочностью и не способны к антимикробному воздействию при имплантации.

Известен способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным многослойным биоактивным покрытием, в котором повышение адгезии покрытия и достижение необходимой пористой структуры решается путем плазменного напыления на титановую основу имплантата при различных режимах системы покрытий из пяти слоев, состоящих из титана или гидрида титана, гидроксиапатита кальция и их смеси (патент РФ на изобретение №2146535, МПК A61L 27/00, F61C 8/00, опубл. 20.03.2000 г.).

Однако данный способ является дорогостоящим и трудоемким, при этом он не обеспечивает получение прочного покрытия с антимикробным эффектом.

Наиболее близким к предлагаемому решению является способ изготовления внутрикостных имплантатов, заключающийся в нанесении плазменным напылением на металлическую титановую основу имплантата биологически активного покрытия.

В данном способе напыление при различных режимах ведут послойно, при этом первым слоем напыляют титан дисперсностью 3÷5 мкм, дистанцией напыления 70÷80 мм и толщиной 5÷10 мкм, вторым слоем напыляют титан дисперсностью 50÷100 мкм, дистанцией напыления 100 мм, толщиной 50÷115 мкм, третьим слоем наносят механическую смесь титана дисперсностью 40÷70 мкм и гидроксиапатита дисперсностью 5÷10 мкм с соотношением 60÷80 и 20÷40 мас.% соответственно, дистанцией напыления 80 мм и толщиной слоя 15÷20 мкм, четвертый слой наносят дистанцией напыления 70 мм, толщиной 20÷30 мкм, а при приготовления четвертого слоя смешивают порошки оксида алюминия или гидроксиапатита дисперсностью 40÷90 мкм с порошком гидроксиапатита дисперсностью менее 40 мкм или порошком оксида алюминия дисперсностью 1÷3 мкм в количестве 70÷95 мас.% и 5÷30 мас.% соответственно, смесь перемешивают, отжигают в течение 1,5÷3 ч и перетирают (патент РФ на изобретение №2443434, МПК A61L 27/02, A61L 27/06, A61L 27/12, A61F 2/28, В82В 3/00, опубл. 27.02.2012 г.).

Однако данный способ не позволяет получить прочное биосовместимое покрытие в сочетании с антимикробным эффектом.

Задачей предлагаемого изобретения является создание внутрикостных имплантатов с биосовместимым покрытием, обладающим высокими остеоинтеграционными свойствами и характеризующимся повышенной прочностью и наличием антимикробных свойств.

Поставленная задача достигается тем, что в способе изготовления внутрикостных имплантатов, включающем послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, четвертый слой формируют на основе гидроксиапатита или оксида алюминия, новизной является то, что при формировании четвертого слоя смешивают порошок бемита дисперсностью не более 50 нм с гидроксиапатитом или оксидом алюминия в количестве 5-20% порошка бемита от общего количества смеси, при этом бемит берут в виде суспензии, приготовленной с добавлением поверхностно-активного вещества, растворенного в дистиллированной воде концентрацией 0,25-5% и обработанного в ультразвуковой ванне, затем в полученную суспензию из бемита добавляют гидроксиапатит или оксид алюминия и обрабатывают в ультразвуковой ванне, сушат, отжигают и измельчают.

Кроме этого при приготовлении суспензии из бемита и раствора поверхностно-активного вещества в дистилированной воде берут в соотношении 1 г бемита к 8 мл раствора. В качестве поверхностно-активного вещества (ПАВ) используют полиэтиленглюколь 400 (ПЭГ). Обработка суспензии бемита с раствором поверхностно-активного вещества в ультразвуковой ванне производят в течение 10 минут. Обработку в ультразвуковой ванне суспензии из бемита, гидроксиапатита или оксида алюминия производят в течение 2 минут.

Предлагаемое изобретение поясняется чертежами: Фиг.1 - Структура покрытия; Фиг.2 - Спектр лазерного микроспектрального анализа покрытия гидроксиапатита на титановом подслое, насыщенного бемитом,

где:

1 - металлическая основа,

2 - первый слой,

3 - второй слой,

4 - третий слой,

5 - четвертый слой,

6 - пропитка порошка из суспензии бемита в дистиллированной воде,

7 - пропитка порошка из суспензии бемита в 5% растворе ПЭГ в дистиллированной воде,

8 - пропитка порошка из суспензии бемита в 5% растворе ПЭГ в дистиллированной воде в ультразвуковой ванне,

9 - спектр титана.

Способ изготовления внутрикостных имплантатов заключается в следующем.

Первым слоем 2 (фиг.1) напыляют титан дисперсностью 3÷5 мкм, дистанцией напыления 70÷80 мм и толщиной 5÷10 мкм на металлическую основу 1, вторым слоем 3 (фиг.1) титан дисперсностью 50÷100 мкм, дистанцией напыления 100 мм, толщиной 50÷115 мкм, третьим слоем 4 (фиг.1) наносят механическую смесь титана дисперсностью 40÷70 мкм и гидроксиапатита дисперсностью 5÷10 мкм с соотношением 60÷80 и 20÷40 мас.% соответственно, дистанцией напыления 80 мм и толщиной слоя 15÷20 мкм, четвертым слоем 5 (фиг.1) наносят с дистанцией напыления 70 мм, толщиной 20÷30 мкм, для приготовления четвертого слоя смешивают, например, с помощью керамического стержня, порошок бемита дисперсностью не более 50 нм с порошком гидроксиапатита или оксида алюминия дисперсностью не более 90 мкм в количестве от 5 до 20% порошка бемита от общего количества смеси. Введение частиц порошка бемита дисперсностью не более 50 нм в гидроксиапатит или оксид алюминия способствует повышению механических характеристик биосовместимого покрытия, а также приводит к проявлению антимикробных свойств (Мазалов Ю.А., Федотов А.В., Берш А.В., Судник Л.В., Лисицин А.В. Перспективы применения нанокристаллических оксидов и гидрооксидов алюминия // М.: Технология металлов, 2008. - №1. - с.8-11; 2. Нанотехнологическое общество: пресс-релиз РОСНАНО [электронный ресурс]: URL: http: //www.rusnor.org/nanoworld/pro/7427.htm [дата обращения 10.09.2012 г.]).

Использование бемита в заявленном процентном соотношении обосновано тем, что применение менее 5% бемита от общего количества смеси не приведет к желаемому повышению прочности биосовместимого покрытия, а использование его более 20% от общего количества смеси будет способствовать изменению пористой структуры основы биосовместимого покрытия, которая должна обладать порами 100-200 мкм для прорастания кости и кровеносных сосудов живой ткани в имплантат. Поэтому оптимальным диапазоном является использование бемита 5-20% от общего количества смеси.

Бемит берут в виде суспензии, приготовленной с добавлением поверхностно-активного вещества, например полиэтиленглюколя 400, растворенного в воде, например дистиллированной, с концентрацией 0,25-5% в соотношении на 1 г бемита 8 мл раствора ПАВ, и обрабатывают полученную суспензию в ультразвуковой ванне, например ПСБ-ГАЛС, в течение 10 минут.

Использование в качестве поверхностно-активного вещества полиэтиленгликоля обосновано его высокой био- и гемосовместимостью. Полимер полиэтиленгликоля не растворяется, а всего лишь набухает в воде, образуя полимерные цепи, сшитые в сплошную сетку, которая может применяться как депо для частиц порошка бемита дисперсностью не более 50 нм, что облегчает процесс проникновения частиц порошка бемита в поры между частицами порошков гидроксиапатита и оксида алюминия.

Использование поверхностно-активного вещества менее 0,25% не эффективно, т.к. не происходит удовлетворительного распределения частиц порошка бемита дисперсностью не более 50 нм в растворе поверхностно-активного вещества, а применение более 5% поверхностно-активного вещества приводит к его взвеси в дистиллированной воде. Поэтому оптимальным интервалом является использование 0,25-5% поверхностно-активного вещества в растворе.

Бемит в растворе поверхностно-активного вещества подобран таким образом, чтобы при последующем добавлении в полученную суспензию бемита в растворе поверхностно-активного вещества порошка оксида алюминия или гидроксиапатита получаемая смесь должна представлять собой суспензию, т.е. бемит в растворе поверхностно-активного вещества должен быть в количественном соотношении 1:8 соответственно.

Обработка в ультразвуковой ванне способствует проникновению частиц порошка бемита в поры и поровые каналы частиц гидроксиапатита или оксида алюминия. Обработку суспензии бемита в растворе поверхностно-активного вещества в ультразвуковой ванне менее 10 мин проводить не эффективно, поскольку крупные частицы порошка бемита дисперсностью от 35 до 50 нм не закрепляются в депо сеток поверхностно-активного вещества и оседают из суспензии. Увеличение времени более 10 мин технологически и экономически не целесообразно, так как приведет к необоснованному расходу времени и энергии. Таким образом, обработку суспензии бемита в растворе поверхностно-активного вещества в ультразвуковой ванне целесообразно проводить в течение 10 минут.

Затем полученную суспензию из смеси бемита с гидроксиапатитом или оксидом алюминия обрабатывают в ультразвуковой ванне в течение двух минут, далее сушат, например, на воздухе, далее отжигают, например, в муфельной печи, и измельчают, например, с помощью пестика.

Обработка в ультразвуковой ванне суспензии из смеси бемита с гидроксиапатитом или оксидом алюминия способствует проникновению частиц порошка бемита дисперсностью не более 50 нм в поры и поровые каналы порошка гидроксиапатита или оксида алюминия. Так как поры и поровые каналы частиц порошков гидроксиапатита или оксида алюминия составляют незначительную долю от массы частиц порошка, достаточно применить ультразвуковую обработку в течение 2 минут. Процесс проникновения частиц порошка бемита в порошки гидроксиапатита или оксида алюминия относится к капиллярным явлениям, поэтому увеличение времени более 2 минут нецелесообразно, а уменьшение времени может привести к неполному заполнению пор и каналов.

Сушка смеси бемита с гидроксиапатитом или оксидом алюминия производится на воздухе в течение суток. При использовании времени сушки менее 24 часов смесь бемита с гидроксиапатитом или оксидом алюминия не высыхает. Поэтому целесообразно применять сушку смеси бемита с гидроксиапатитом или оксидом алюминия в течение суток.

Отжиг проводят в муфельной печи при 200°С, так как при 300°С бемит разлагается на оксид алюминия и воду, а при температуре отжига ниже 200°С необходимо применять слишком длительное время выдержки (более 3 ч), что является не целесообразным, поэтому отжиг смеси бемита 9 гидроксиапатитом или оксидом алюминия в течение 1 часа при температуре 200°С в муфельной печи является оптимальной и достаточной.

Способ осуществляли следующим образом.

Приготовили три суспензии из частиц порошка бемита размером не более 50 нм:

№1 - бемит и дистиллированная вода при соотношении 1 г:8 мл соответственно

№2 - бемит и 0,25% раствор ПАВ ПЭГ-400 при соотношении 1 г:8 мл соответственно

№3 - бемит и 5% раствор ПАВ ПЭГ-400 при соотношении 1 г:8 мл соответственно

Все смеси (№1, 2, 3) обработали в ультразвуковой ванне при частоте 35 кГц в течение 10 мин.

Смесь №1 налили в порошок гидроксиапатита с размером частиц 40-90 мкм при соотношении бемита и гидроксиапатита 20 и 80 масс.% соответственно и перемешали. То же самое выполнили со смесью №2.

В суспензию смеси №3 поместили порошок гидроксиапатита с размером частиц 40-90 мкм и дополнительно обработали в ультразвуковой ванне при частоте 35 кГц в течение 2 минут. Причем соотношение бемита и гидроксиапатита составляло также 20 и 80 масс.% соответственно.

Все три суспензии высушили на воздухе в течение 24 часов. Затем отожгли для дополнительной сушки в муфельной печи при 200°С в течение 1 часа.

После чего производили послойное плазменное напыление покрытий на образцы из титана марки ВТ1-00 в соответствии с патентом РФ №2443434.

Послойное плазменное напыление покрытий осуществляли в атмосфере в струе защитного газа аргона, при этом расход плазмообразующего газа составлял 20÷40 л/мин, скорость перемещения плазмотрона при напылении 80÷700 мм/мин, напряжение дуги 30 В, скорость вращения детали 110÷160 об/мин.

Напыление последних слоев на три разных образца проводили при токе плазменной дуги 450-500А, с дистанцией напыления 70 мм.

Микроспектральным анализом обнаружено на всех трех образцах наличие линий алюминия от бемита (А1 3082 нм и А1 3092 нм). Однако соотношение интенсивностей линий компонента модификатора - алюминия к интенсивностям линий подслоя титана Ti 9 (Фиг.2) свидетельствует о том, что частицы бемита из суспензии в дистилированной воде довольно крупные и не пропитывают поры и каналы частиц гидроксиапатита, а забивают поры между частицами гидроксиапатита в покрытии. При этом линии титанового подслоя практически отсутствуют в спектре 6 (Фиг.2). Введение в суспензию №2 и №3 поверхностно-активного вещества ПЭГ-400 изменяет процесс пропитки покрытия. Наиболее мелкие частицы бемита начинают проникать в поры частиц гидроксиапатита 7 (Фиг.2). В спектре покрытия видны линии подслоя титана.

Наиболее интенсивная пропитка пор и каналов частиц гидроксиапатита и формирование пор между частицами гидроксиапатита в покрытии происходит при дополнительной ультразвуковой обработке частиц порошка гидроксиапатита в суспензии №3, содержащей ПАВ 8 (Фиг.2). Этот метод выбран нами для введения частиц порошка бемита в гидроксиапатит или оксид алюминия.

Похожие патенты RU2512714C1

название год авторы номер документа
Способ напыления биосовместимого покрытия модифицированного компонентом с низкой температурой разложения 2018
  • Мельникова Ираида Прокопьевна
  • Лясникова Александра Владимировна
  • Дударева Олеся Александровна
  • Гришина Ирина Петровна
RU2684283C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С БИОАКТИВНЫМ ПОКРЫТИЕМ 2013
  • Лясникова Александра Владимировна
  • Дударева Олеся Александровна
RU2530573C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА 2013
  • Лясников Владимир Николаевич
  • Протасова Наталия Владимировна
  • Муктаров Орынгали Джулдгалиевич
RU2525737C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С УГЛЕРОДНЫМ НАНОПОКРЫТИЕМ 2012
  • Лясников Владимир Николаевич
  • Перинский Владимир Владимирович
  • Муктаров Орынгали Джулдгалиевич
RU2490032C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С МНОГОСЛОЙНЫМ ПОКРЫТИЕМ 2013
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
  • Дударева Олеся Александровна
  • Гришина Ирина Петровна
RU2526252C1
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВЫХ ИМПЛАНТАТОВ ПОРОШКОВЫМИ БИОКЕРАМИЧЕСКИМИ МАТЕРИАЛАМИ 2014
  • Родионов Игорь Владимирович
RU2549984C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО ИМПЛАНТАТА С ИОННО-ЛУЧЕВОЙ МОДИФИКАЦИЕЙ 2013
  • Муктаров Орынгали Джулдгалиевич
  • Перинская Ирина Владимировна
  • Лясников Владимир Николаевич
  • Перинский Владимир Владимирович
RU2530568C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИМПЛАНТАТОВ 2013
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
  • Дударева Олеся Александровна
  • Гришина Ирина Петровна
RU2529262C1
СПОСОБ ЭЛЕКТРОПЛАЗМЕННОГО НАПЫЛЕНИЯ БИОСОВМЕСТИМЫХ ПОКРЫТИЙ НА ОСНОВЕ МАГНИЙСОДЕРЖАЩЕГО ТРИКАЛЬЦИЙФОСФАТА 2016
  • Лясникова Александра Владимировна
  • Маркелова Ольга Анатольевна
  • Гришина Ирина Петровна
  • Дударева Олеся Александровна
  • Лясников Владимир Николаевич
RU2641597C1
СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНСОДЕРЖАЩЕГО БИОПОКРЫТИЯ ТИТАНОВОГО ИМПЛАНТАТА 2014
  • Перинская Ирина Владимировна
  • Перинский Владимир Владимирович
RU2553355C1

Иллюстрации к изобретению RU 2 512 714 C1

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С АНТИМИКРОБНЫМ ЭФФЕКТОМ

Изобретение относится к медицине, а именно к ортопедической стоматологии. Описан способ изготовления внутрикостных имплантатов, включающий послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, четвертый слой формируют на основе гидроксиапатита или оксида алюминия, при этом при формировании четвертого слоя смешивают порошок бемита дисперсностью не более 50 нм с порошками гидроксиапатита или оксида алюминия в количестве 5-20% порошка бемита от общего количества веществ, при этом бемит берут в виде суспензии, приготовленной с добавлением поверхностно-активного вещества, растворенного в дистиллированной воде концентрацией 0,25-5%, обработанного в ультразвуковой ванне, затем полученную суспензию из бемита и гидроксиапатита или оксида алюминия обрабатывают в ультразвуковой ванне, сушат, отжигают и измельчают. Внутрикостные имплантаты имеют биосовместимое покрытие повышенной прочности. 4 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 512 714 C1

1. Способ изготовления внутрикостных имплантатов, включающий послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, четвертый слой формируют на основе гидроксиапатита или оксида алюминия, отличающийся тем, что при формировании четвертого слоя смешивают порошок бемита дисперсностью не более 50 нм с порошками гидроксиапатита или оксида алюминия в количестве 5-20% порошка бемита от общего количества веществ, при этом бемит берут в виде суспензии, приготовленной с добавлением поверхностно-активного вещества, растворенного в дистиллированной воде концентрацией 0,25-5%, обработанного в ультразвуковой ванне, затем полученную суспензию из бемита и гидроксиапатита или оксида алюминия обрабатывают в ультразвуковой ванне, сушат, отжигают и измельчают.

2. Способ изготовления внутрикостных имплантатов по п.1, отличающийся тем, что при приготовлении суспензии бемита и раствора поверхностно-активного вещества в воде их берут в соотношении 1 г бемита к 8 мл раствора.

3. Способ изготовления внутрикостных имплантатов по п.1, отличающийся тем, что в качестве поверхностно-активного вещества берут полиэтиленглюколь 400.

4. Способ изготовления внутрикостных имплантатов по п.1, отличающийся тем, что обработку в ультразвуковой ванне приготовленной суспензии бемита с раствором поверхностно-активного вещества производят в течение 10 минут.

5. Способ изготовления внутрикостных имплантатов по п.1, отличающийся тем, что обработку в ультразвуковой ванне суспензии из бемита и гидроксиапатита или оксида алюминия производят в течение 2 минут.

Документы, цитированные в отчете о поиске Патент 2014 года RU2512714C1

СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ 2010
  • Мельникова Ираида Прокопьевна
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
RU2443434C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ 1994
  • Лясников В.Н.
  • Калганова С.Г.
  • Верещагина Л.А.
RU2074674C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С ПЛАЗМОНАПЫЛЕННЫМ МНОГОСЛОЙНЫМ БИОАКТИВНЫМ ПОКРЫТИЕМ 1998
  • Лясников В.Н.
  • Верещагина Л.А.
  • Лепилин А.В.
  • Рыжков В.Б.
RU2146535C1

RU 2 512 714 C1

Авторы

Мельникова Ираида Прокопьевна

Лясникова Александра Владимировна

Лясников Владимир Николаевич

Даты

2014-04-10Публикация

2013-01-09Подача