СПОСОБ ИЗМЕРЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ В ТЕРМОЛЮМИНЕСЦЕНТНОМ ДЕТЕКТОРЕ НА ОСНОВЕ АНИОНО-ДЕФЕКТНОГО МОНОКРИСТАЛЛА ОКСИДА АЛЮМИНИЯ (ВАРИАНТЫ) Российский патент 2014 года по МПК G01T1/11 

Описание патента на изобретение RU2513651C2

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия, и может быть использовано в клинической дозиметрии, при мониторинге радиационной обстановки на ядерных реакторах, ускорителях, в лабораториях и на производствах с источниками заряженных частиц, при археологическом и геологическом датировании, в аварийной и ретроспективной дозиметрии.

Известен способ подготовки люминесцентного материала для обнаружения ионизирующего излучения с использованием фототрансферной люминесценции в анионодефектном оксиде алюминия с мелкими и глубокими ловушками [патент США 6414324]. Способ включает операции: первичное облучение детектора измеряемой дозой ионизирующего излучения, достаточной, чтобы заполнить мелкие и глубокие ловушки носителями заряда; нагревание детектора до температуры 600-700 К со скоростями 10, 20 К/с, чтобы опустошить от носителей заряда мелкие ловушки; охлаждение детектора до окружающей температуры. После этого люминесцентный материал подвергается ультрафиолетовому облучению, в результате действия которого носители заряда будут освобождены из глубоких ловушек и повторно захвачены мелкими ловушками, так что далее с использованием тепловой или оптической стимуляции возможно проведение измерений повторно захваченных мелкими ловушками носителей заряда с целью определения измеряемой дозы ионизирующего излучения.

Способ позволяет проводить измерение дозы в диапазоне, ограниченном величиной дозы до 100 Гр. Кроме того, неполнота и неконтролируемость передачи носителей заряда из глубоких ловушек в мелкие снижают точность измерения дозы. В описании аналога отсутствуют данные о наличии линейного диапазона измерения поглощенной дозы при облучении детектора импульсными электронами.

Известен также термолучевой способ обработки вещества детектора ионизирующих излучений на основе оксида алюминия [патент РФ 2229145], включающий предварительную подготовку детектора к эксплуатации путем нагрева детектора до температуры 300-350°С и облучения его в нагретом состоянии в этом интервале температур ультрафиолетовым излучением мощностью 1-10 мВт в диапазоне длин волн 200-220 нм в течение 1-10 мин. Затем, после указанной термолучевой обработки вещества детектора, производятся облучение детектора γ- или β-излучением и определение измеряемой дозы при скорости нагрева детектора в диапазоне от 0,5 до 12 град/с.

Подготовка детектора термолучевой обработкой к измерению дозы обеспечивает предварительное заполнение глубоких ловушек носителями заряда, что повышает чувствительность детектора, снижает зависимость термолюминесцентного выхода от скорости нагрева и повышает надежность, точность, достоверность измерений. При последующем облучении детектора измеряемым излучением заполняются мелкие ловушки, ответственные за низкотемпературный дозиметрический пик термолюминесценции. При этом измеряемая доза определяется выходом термолюминесценции с мелких ловушек. Это ограничивает линейный диапазон измеряемых доз величиной 0,1 Гр (фиг.5 к патенту РФ 2229145). Кроме того, отсутствуют данные о наличии линейного диапазона измерения поглощенной дозы при облучении детектора импульсными электронами.

Наиболее близким к предложенному является способ измерения поглощенной дозы ионизирующего γ- или β-излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия [патент РФ 2390798]. Способ включает предварительную подготовку детектора к эксплуатации путем нагрева детектора до температуры 300-350°С и облучение его в нагретом состоянии ультрафиолетовым излучением мощностью 1-10 мВт в диапазоне длин волн 200-220 нм в течение 1-10 мин. При указанной предварительной подготовке детектора к эксплуатации обеспечивается заполнение глубоких ловушек носителями заряда. Затем после облучения детектора измеряемым излучением и заполнения мелких ловушек носителями заряда производится измерение дозиметрического термолюминесцентного сигнала в спектральном диапазоне 240-280 нм (выделяется фильтром). Нагрев детектора осуществляют со скоростями от 1 до 8 град/с.

В способе-прототипе подготовка детектора к эксплуатации путем предварительного заполнения глубоких ловушек носителями заряда и измерение дозиметрического термолюминесцентного сигнала в спектральном диапазоне 240-280 нм обеспечивают, в сравнении с аналогом по патенту РФ 2229145, дополнительное снижение зависимости термолюминесцентного выхода от скорости нагрева, повышение надежности, точности и достоверности измерений. Однако заполнение мелких ловушек носителями заряда при последующем облучении детектора измеряемым излучением и определение измеряемой дозы путем использования выхода термолюминесценции с этих ловушек тоже, как и в предыдущем аналоге, ограничивает диапазон измеряемых доз. В описании прототипа отсутствуют данные о наличии линейного диапазона измерения поглощенной дозы при облучении детектора импульсным потоком (пучком) электронов.

Задачей изобретения является увеличение диапазона измеряемых доз и обеспечение возможности измерения поглощенной дозы от импульсных электронов. Задача решена двумя вариантами изобретения.

Для решения поставленной задачи по первому варианту изобретения способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия, содержащем мелкие и глубокие ловушки носителей заряда, включающий подготовку детектора к измерению путем нагревания его до определенной температуры, облучение детектора измеряемым излучением и измерение дозиметрического термолюминесцентного сигнала в полосе свечения 240-280 нм при нагреве детектора до требуемой температуры, отличается тем, что подготовку детектора к измерению проводят после его облучения измеряемым излучением и осуществляют нагреванием детектора до температуры 490-540 К со скоростью 5-10 град/с, с последующим естественным охлаждением детектора на воздухе до комнатной температуры, а нагрев детектора для измерения дозиметрического термолюминесцентного сигнала осуществляют до температуры, находящейся в диапазоне 910-930 К.

Для решения поставленной задачи по второму варианту изобретения способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. содержащем мелкие и глубокие ловушки носителей заряда, включающий подготовку детектора к измерению, облучение детектора измеряемым излучением и измерение дозиметрического термолюминесцентного сигнала в полосе свечения 240-280 нм при нагреве детектора до требуемой температуры, отличается тем, что подготовку детектора к измерению проводят после его облучения измеряемым излучением и осуществляют путем облучения детектора в течение 1-3 минут квантами света видимого диапазона с длиной волны 470-570 нм, мощностью светового потока 50-60 мВт, а нагрев детектора для измерения дозиметрического термолюминесцентного сигнала осуществляют до температуры, находящейся в диапазоне 910-930 К.

Новым техническим результатом изобретения является обеспечение измерений в линейном диапазоне величин доз от 1,5 до 20 кГр для β-излучения, от 5 до 100 Гр для γ-излучения, а также в линейном диапазоне доз от 2 кГр до 60 кГр для импульсных электронов. Имеет место существенное, неочевидное многократное увеличение диапазона измеряемых доз в сравнении с прототипом. Расширяется круг способов, позволяющих производить измерения поглощенной дозы γ-излучения, β-излучения и импульсного потока электронов с увеличенными значениями максимальных величин поглощенной дозы. Связь между отличительными признаками предложенного изобретения и указанным результатом экспериментально выявлена авторами изобретения.

Расширение диапазона регистрируемых доз в предложенном способе обусловлено тем, что в качестве дозиметрических используются высокотемпературные дозиметрические пики термолюминесценции, связанные с глубокими ловушками. При облучении детектора измеряемым излучением вначале заполняются носителями заряда до насыщения мелкие ловушки, находящиеся в анионодефектном монокристалле оксида алюминия и обусловливающие низкотемпературные дозиметрические пики в диапазоне температур до 490-540 К. При этом глубокие ловушки заполняются незначительно. Как только произойдет заполнение носителями заряда до насыщения мелких ловушек, при дальнейшем росте дозы начинают эффективно заполняться глубокие ловушки, формирующие высокотемпературный термолюминесцентный сигнал, пропорциональный поглощенной дозе при температурах от 541 до 930 К. Регистрация этого высокотемпературного сигнала позволяет измерять поглощенную дозу величиной до 100 Гр для γ-излучения, до 20 кГр для β-излучения и до 60 кГр для импульсного пучка электронов.

В аналогах и прототипе частичный захват носителей заряда на глубокие ловушки при регистрации измеряемого облучения рассматривался как нежелательный процесс, мешающий измерениям низкотемпературного дозиметрического пика с мелких ловушек и негативно влияющий на точность определения дозы измеряемого излучения. В этой связи глубокие ловушки заполнялись носителями заряда под действием ультрафиолетового излучения при повышенной температуре для того, чтобы заполнить до насыщения эти ловушки. При этом глубокие ловушки перестают влиять на захват носителей заряда мелкими ловушками. В предложенном способе, наоборот, захват носителей заряда глубокими ловушками при высокодозном облучении рассматривается как необходимый и положительный фактор, а при подготовке детектора к измерению нагревом облученного детектора до 490-540 К или облучением детектора квантами света видимого диапазона 470-590 нм опустошаются мелкие ловушки для того, чтобы они не мешали регистрации пропорционального измеряемой дозе высокотемпературного термолюминесцентного сигнала с глубоких ловушек.

Предложенная группа изобретений обладает единством, так как технический результат в обоих вариантах изобретения достигается за счет одной и той же операции опустошения мелких ловушек, осуществляемой перед измерением поглощенной дозы.

Изобретение поясняется чертежами:

фиг.1 - полученная авторами для детектора на основе анионодефектного монокристалла оксида алюминия зависимость интенсивности термолюминесценции в относительных единицах (отн. ед., ось ординат) от температуры нагрева детектора в Кельвинах (К, ось абсцисс), называемая кривой термовысвечивания; А и Б - низкотемпературные дозиметрические пики; В и Г - высокотемпературные дозиметрические пики;

фиг.2 - полученная авторами с использованием предложенного способа для детектора на основе анионодефектного монокристалла оксида алюминия зависимость интенсивности термолюминесцентного излучения в относительных единицах (отн. ед., ось ординат) от величины поглощенной дозы в кГр (ось абсцисс) при облучении детектора ионизирующим β-бета-излучением источника типа БИС-10 на основе изотопа 90Sr;

фиг.3 - полученная авторами с использованием предложенного способа для детектора на основе анионодефектного монокристалла оксида алюминия зависимость интенсивности термолюминесцентного излучения в относительных единицах (отн. ед., ось ординат) от величины поглощенной дозы в Гр (ось абсцисс) при облучении детектора ионизирующим гамма-излучением источника на основе изотопа 60Со;

фиг.4 - полученная авторами с использованием предложенного способа для детектора на основе анионодефектного монокристалла оксида алюминия зависимость интенсивности термолюминесцентного излучения в относительных единицах (отн. ед., ось ординат) от величины поглощенной дозы в кГр (ось абсцисс) при облучении детектора импульсным пучком электронов от электронной пушки с параметрами: длительность импульса 2 нс, средняя энергия электронов в пучке 130±10 кэВ, плотность тока пучка 60 А/см2.

Способ определения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия осуществляют следующим образом.

Размещенный в контрольных точках детектор облучается измеряемым ионизирующим γ-излучением, или β-излучением, или импульсным потоком электронов. Под действием ионизирующего излучения в детекторе образуются свободные носители заряда (электроны и дырки), которые локализуются на электронно-дырочных центрах захвата (ловушках) и удерживаются в них. При облучении детектора высокодозным измеряемым излучением сначала заполняются носителями заряда мелкие ловушки, обусловливающие низкотемпературные дозиметрические пики, затем заполняются глубокие ловушки, формирующие высокотемпературные дозиметрические пики.

В детекторе на основе анионодефектного монокристалла оксида алюминия к мелким ловушкам относятся ловушки с энергией активации термолюминесценции не более 0,8 эВ (преимущественно от 0,5 эВ), глубокие ловушки имеют энергию активации термолюминесценции более 0,8 эВ (преимущественно от 1,0 до 2,0 эВ).

После снятия детектора с места облучения производят подготовку детектора к измерению поглощенной дозы, осуществляя опустошение мелких ловушек.

Для этого в первом варианте способа осуществляют нагревание детектора до температуры 490-540 К со скоростью 5-10 град/с с последующим естественным охлаждением детектора на воздухе до комнатной температуры. При скоростях нагрева, меньших чем 5 град/с, чрезмерно увеличивается время измерения поглощенной дозы. При скорости нагрева, большей 10 град/с, возникает термический градиент между детектором и нагревательным элементом, что снижает точность определения температуры детектора в процессе измерения, а также вызывает в детекторе нежелательные напряжения, изменяющие его дозиметрические свойства. Снижается точность измерения поглощенной дозы.

Выбор диапазона температур максимального нагрева детектора при подготовке его к измерению поглощенной дозы обусловлен тем, что этот диапазон должен находиться между низкотемпературными (А, Б) и высокотемпературными (В, Г) дозиметрическими пиками (фиг.1). При температуре нагрева, меньшей 490 К, не обеспечивается полное опустошение мелких ловушек, искажается дозиметрическая информация при измерении поглощенной дозы, ухудшается точность измерения. При температуре нагрева, большей 540 К, происходит частичное опустошение глубоких ловушек, также искажается дозиметрическая информация.

Во втором варианте способа подготовку детектора к измерению поглощенной дозы (опустошение мелких ловушек) осуществляют путем облучения детектора в течение 1-3 минут квантами света видимого диапазона с длиной волны 470-570 нм, мощностью светового потока 50-60 мВт. В качестве источника облучения используются соответствующие светодиоды, например, типа C527EZ500-S3000-2 компании Cree (USA) с длиной волны 520-535 нм и мощностью светового потока 30-60 мВт.

При времени облучения менее 1 мин неполностью опустошаются мелкие ловушки, искажается дозиметрическая информация, ухудшается точность измерения поглощенной дозы. При времени облучения более 3 мин чрезмерно увеличивается общее время измерения поглощенной дозы.

При мощности светового потока меньше 50 мВт уменьшается скорость опустошения мелких ловушек, увеличивается общее время измерения поглощенной дозы. Увеличение мощности светового потока более 60 мВт приводит к недопустимому нагреву детектора, вызывающему опустошение глубоких ловушек с потерей дозиметрической информации и соответствующим увеличением погрешности измерения поглощенной дозы.

При облучении детектора видимым светом с длиной волны, меньшей 470 нм, увеличивается энергия квантов света, что вызывает оптическую ионизацию F-центров, входящих в состав агрегатных центров глубоких ловушек. При этом теряется часть дозиметрической информации и увеличивается погрешность измерения. При длине волны облучения более 570 нм энергия квантов света недостаточна для ионизации и опустошения мелких ловушек, соответственно искажается дозиметрическая информация, уменьшается точность измерения.

После подготовки детектора к измерению производят собственно измерение поглощенной дозы термолюминесцентным способом путем нагревания детектора до температуры 910-930 К со скоростью, выбранной в диапазоне 1-8 град/с. В этом диапазоне скоростей нагрева минимальна зависимость интенсивности термолюминесцентного сигнала от скорости нагрева детектора. Нагрев детектора производится до температур 910-930 К, выходящих за верхний предел диапазона температур (910 К, фиг.1), в котором находятся высокотемпературные дозиметрические пики В и Г. При максимальной температуре нагрева, меньшей 910 К, не происходит полной эффективной ионизации глубоких ловушек, теряется дозиметрическая информация, снижается точность измерения поглощенной дозы. Если максимальная температура нагрева превышает значение 930 К, начинается процесс отжига кислородных вакансий в детекторе с уменьшением концентрации F-центров, входящих в состав агрегатных центров глубоких ловушек. Это приводит к изменению дозиметрических свойств детектора и снижению точности измерения поглощенной дозы.

При нагревании облученного детектора в процессе измерения поглощенной дозы захваченные носители заряда освобождаются из глубоких ловушек и рекомбинируют с центрами свечения. При рекомбинации происходит испускание квантов света (термолюминесценция), количество которых пропорционально поглощенной дозе излучения. Образующийся в процессе нагрева световой поток преобразуется в дозиметрический термолюминесцентный сигнал с помощью термолюминесцентного считывателя. На фигурах 2 и 3 точками отмечены результаты проведенных предложенным способом измерений величины поглощенной дозы.

Используемый при реализации способа термолюминесцентный считыватель включает нагревательный элемент, источник облучения детектора светом, фотоэлектронный умножитель (например, ФЭУ-142), электронный модуль и персональный компьютер. Нагревательный элемент вместе с блоком силовой электроники и терморегулятором осуществляет реализацию заданного закона нагрева детектора как при подготовке его к измерению поглощенной дозы, так и при ее измерении. Фотоэлектронный умножитель с расположенным перед ним фильтром, выделяющим световой поток в диапазоне 240-280 нм, обеспечивает регистрацию светового потока термолюминесценции и преобразование его в фототек. С помощью аналого-цифрового преобразователя электронного модуля фототек преобразуется в цифровой сигнал, который через соответствующий интерфейс воспринимается компьютером. Дозиметрическая информация представляется в виде зависимости интенсивности термолюминесценции от температуры нагрева (фиг.1, пики В и Г). При этом низкотемпературные пики А и Б отсутствуют на получаемой в процессе измерения кривой термовысвечивания, так как соответствующие им мелкие ловушки опустошены ранее при подготовке детектора к измерению.

Для оценки поглощенной дозы могут использоваться два параметра кривой термовысвечивания: интенсивность максимума пика или светосумма, пропорциональная площади под кривой термовысвечивания. Для расчета поглощенной дозы интенсивность либо светосумма умножаются на соответствующий калибровочный коэффициент, что позволяет получить информацию в единицах поглощенной дозы (Гр или кГр). Вычисления осуществляются с использованием, например, персонального компьютера типа IBM, снабженного, в частности, программным обеспечением, функционирующим в среде Турбо-Паскаль 7.0.

Похожие патенты RU2513651C2

название год авторы номер документа
СПОСОБ ТЕРМОЛУЧЕВОЙ ПОДГОТОВКИ К ЭКСПОЗИЦИЯМ ТЕРМОЛЮМИНЕСЦЕНТНЫХ ДЕТЕКТОРОВ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2005
  • Кортов Всеволод Семенович
  • Мильман Игорь Игоревич
  • Никифоров Сергей Владимирович
  • Моисейкин Евгений Витальевич
RU2288485C1
СПОСОБ ИЗМЕРЕНИЯ ДОЗЫ В ТВЕРДОТЕЛЬНЫХ ДЕТЕКТОРАХ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ, НАКОПЛЕННОЙ ПРИ ПОВЫШЕННОЙ ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕЙ СРЕДЫ 2007
  • Мильман Игорь Игориевич
  • Моисейкин Евгений Витальевич
  • Никифоров Сергей Владимирович
  • Ревков Иван Григорьевич
  • Литовченко Евгений Николаевич
  • Соловьев Сергей Васильевич
RU2346296C1
СПОСОБ ПОВТОРНОГО ИЗМЕРЕНИЯ ДОЗИМЕТРИЧЕСКОГО ТЕРМОЛЮМИНЕСЦЕНТНОГО СИГНАЛА В ТВЕРДОТЕЛЬНЫХ ДЕТЕКТОРАХ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 2004
  • Кортов Всеволод Семенович
  • Мильман Игорь Игоревич
  • Никифоров Сергей Владимирович
  • Моисейкин Евгений Витальевич
RU2275655C2
СПОСОБ ОБРАБОТКИ ВЕЩЕСТВА ТВЕРДОТЕЛЬНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2003
  • Кортов В.С.
  • Мильман И.И.
  • Никифоров С.В.
RU2229145C1
СПОСОБ ТЕРМОПОДГОТОВКИ К ЭКСПОЗИЦИИ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2013
  • Кортов Всеволод Семенович
  • Звонарев Сергей Владимирович
  • Моисейкин Евгений Витальевич
  • Никифоров Сергей Владимирович
RU2526235C1
СПОСОБ ИЗМЕРЕНИЯ ДОЗИМЕТРИЧЕСКОГО ТЕРМОЛЮМИНЕСЦЕНТНОГО СИГНАЛА, НАКОПЛЕННОГО В ТВЕРДОТЕЛЬНОМ ДЕТЕКТОРЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2009
  • Курмаев Эрнст Загидович
  • Мильман Игорь Игоревич
  • Литовченко Евгений Николаевич
  • Соловьев Сергей Николаевич
  • Ревков Иван Григорьевич
  • Федоренко Виктор Васильевич
RU2390798C1
СПОСОБ СЧИТЫВАНИЯ НАКОПЛЕННОЙ ДОЗИМЕТРИЧЕСКОЙ ИНФОРМАЦИИ ИЗ ТВЕРДОТЕЛЬНЫХ ДЕТЕКТОРОВ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА БЕРИЛЛИЯ 2007
  • Кружалов Александр Васильевич
  • Иванов Владимир Юрьевич
  • Мильман Игорь Игоревич
  • Таусенев Дмитрий Сергеевич
RU2334998C1
СПОСОБ ТЕРМОЛУЧЕВОЙ ОБРАБОТКИ ВЕЩЕСТВА ТЛ-ОСЛ ТВЕРДОТЕЛЬНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2013
  • Соловьев Сергей Васильевич
  • Власов Максим Игоревич
  • Литовченко Евгений Николаевич
  • Моисейкин Евгений Витальевич
  • Сарычев Максим Николаевич
  • Хохлов Георгий Константинович
  • Мильман Игорь Игориевич
  • Сюрдо Александр Иванович
RU2532506C1
СПОСОБ ИЗМЕРЕНИЯ ВЫСОКИХ И СВЕРХВЫСОКИХ ДОЗ, НАКОПЛЕННЫХ В ТЕРМОЛЮМИНЕСЦЕНТНЫХ ДЕТЕКТОРАХ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОСКИДА АЛЮМИНИЯ, В ТОМ ЧИСЛЕ ПРИ ОБЛУЧЕНИИ В УСЛОВИЯХ ПОВЫШЕННЫХ ТЕМПЕРАТУР ОКРУЖАЮЩЕЙ СРЕДЫ 2014
  • Абашев Ринат Мансурович
  • Власов Максим Игоревич
  • Мильман Игорь Игориевич
  • Моисейкин Евгений Витальевич
  • Сарычев Максим Николаевич
  • Соловьев Сергей Васильевич
  • Сюрдо Александр Иванович
  • Хохлов Георгий Константинович
RU2570107C1
Способ получения профилированных монокристаллов анион-дефектного оксида алюминия для импульсной оптически стимулированной люминесцентной дозиметрии ионизирующих излучений 2022
  • Мильман Игорь Игоревич
  • Сюрдо Александр Иванович
  • Абашев Ринат Мансурович
  • Белов Дмитрий Юрьевич
  • Кравецкий Дмитрий Яковлевич
  • Бородин Владимир Алексеевич
RU2792634C1

Иллюстрации к изобретению RU 2 513 651 C2

Реферат патента 2014 года СПОСОБ ИЗМЕРЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ В ТЕРМОЛЮМИНЕСЦЕНТНОМ ДЕТЕКТОРЕ НА ОСНОВЕ АНИОНО-ДЕФЕКТНОГО МОНОКРИСТАЛЛА ОКСИДА АЛЮМИНИЯ (ВАРИАНТЫ)

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия, содержащем мелкие и глубокие ловушки носителей заряда, включает подготовку детектора к измерению путем нагревания его до определенной температуры, облучение детектора измеряемым излучением и измерение дозиметрического термолюминесцентного сигнала в полосе свечения 240-280 нм при нагреве детектора до требуемой температуры, при этом подготовку детектора к измерению проводят после его облучения измеряемым излучением, а нагрев детектора для измерения дозиметрического термолюминесцентного сигнала осуществляют до температуры, находящейся в диапазоне 910-930 К. Технический результат - расширение диапазона регистрируемых доз. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 513 651 C2

1. Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия, содержащем мелкие и глубокие ловушки носителей заряда, включающий подготовку детектора к измерению путем нагревания его до определенной температуры, облучение детектора измеряемым излучением и измерение дозиметрического термолюминесцентного сигнала в полосе свечения 240-280 нм при нагреве детектора до требуемой температуры, отличающийся тем, что подготовку детектора к измерению проводят после его облучения измеряемым излучением и осуществляют нагреванием детектора до температуры 490-540 К со скоростью 5-10 град/с, с последующим естественным охлаждением детектора на воздухе до комнатной температуры, а нагрев детектора для измерения дозиметрического термолюминесцентного сигнала осуществляют до температуры, находящейся в диапазоне 910-930 К.

2. Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия, содержащем мелкие и глубокие ловушки носителей заряда, включающий подготовку детектора к измерению, облучение детектора измеряемым излучением и измерение дозиметрического термолюминесцентного сигнала в полосе свечения 240-280 нм при нагреве детектора до требуемой температуры, отличающийся тем, что подготовку детектора к измерению проводят после его облучения измеряемым излучением и осуществляют путем облучения детектора в течение 1-3 минут квантами света видимого диапазона с длиной волны 470-570 нм, мощностью светового потока 50-60 мВт, а нагрев детектора для измерения дозиметрического термолюминесцентного сигнала осуществляют до температуры, находящейся в диапазоне 910-930 К.

Документы, цитированные в отчете о поиске Патент 2014 года RU2513651C2

СПОСОБ ИЗМЕРЕНИЯ ДОЗИМЕТРИЧЕСКОГО ТЕРМОЛЮМИНЕСЦЕНТНОГО СИГНАЛА, НАКОПЛЕННОГО В ТВЕРДОТЕЛЬНОМ ДЕТЕКТОРЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2009
  • Курмаев Эрнст Загидович
  • Мильман Игорь Игоревич
  • Литовченко Евгений Николаевич
  • Соловьев Сергей Николаевич
  • Ревков Иван Григорьевич
  • Федоренко Виктор Васильевич
RU2390798C1
СПОСОБ ТЕРМОЛУЧЕВОЙ ПОДГОТОВКИ К ЭКСПОЗИЦИЯМ ТЕРМОЛЮМИНЕСЦЕНТНЫХ ДЕТЕКТОРОВ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2005
  • Кортов Всеволод Семенович
  • Мильман Игорь Игоревич
  • Никифоров Сергей Владимирович
  • Моисейкин Евгений Витальевич
RU2288485C1
СПОСОБ ИЗМЕРЕНИЯ ДОЗЫ В ТВЕРДОТЕЛЬНЫХ ДЕТЕКТОРАХ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ, НАКОПЛЕННОЙ ПРИ ПОВЫШЕННОЙ ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕЙ СРЕДЫ 2007
  • Мильман Игорь Игориевич
  • Моисейкин Евгений Витальевич
  • Никифоров Сергей Владимирович
  • Ревков Иван Григорьевич
  • Литовченко Евгений Николаевич
  • Соловьев Сергей Васильевич
RU2346296C1
US 3835329 A, 10.09.1974
Устройство для многократного авто-МАТичЕСКОгО пОВТОРНОгО ВКлючЕНия(АпВ) ВыКлючАТЕля 1978
  • Гейдерман Жанна Петровна
  • Кузнецов Анатолий Павлович
  • Лисковец Анатолий Семенович
  • Стасенко Ростислав Флорович
  • Федотов Иван Адианович
  • Шишков Игорь Михайлович
SU803071A1

RU 2 513 651 C2

Авторы

Кортов Всеволод Семенович

Никифоров Сергей Владимирович

Звонарев Сергей Владимирович

Слесарев Анатолий Иванович

Моисейкин Евгений Витальевич

Даты

2014-04-20Публикация

2012-08-01Подача