Данное изобретение относится к биотехнологии. Трансгенные животные обладают многими привлекательными свойствами в качестве продуцентов фармацевтических белков как в отношении невысоких затрат по их получению, так и возможностью синтезировать сложные белки. Такие органы животных как молочная железа (3, 12), белок яйца птицы (23), семенная плазма (9), жировые железы (20), кровь и лимфа личинок насекомых (18) и другие потенциально могут быть использованы для синтеза фармацевтических белков.
В последнее время в связи с достижениями в области молекулярной и клеточной биологии по созданию более эффективных генных векторов вирусного и невирусного происхождения, развитию технологии культивирования плюрипотентных стволовых эмбриональных клеточных линий, использованию сперматозоидов и половых органов в качестве объектов введения генов трансгенные продуценты стали рассматриваться как одни из перспективных систем синтеза фармацевтических белков.
Впервые интернализация экзогенной ДНК сперматозоидами млекопитающих была показана группой Брэкетта (5) в 1971 году. Однако следующие работы в этом направлении появились только и 1989 году (15) и с тех пор им уделяется пристальное внимание, так как трансгенез с использованием сперматозоидов не требует больших финансовых затрат. За последние 20 лет использование спермиев в качестве векторов для переноса генных конструкций успешно осуществлено на рыбах (14), земноводных (13), птицах (19), млекопитающих (15). Число сообщений об удачных попытках интеграции экзогенной ДНК и ее наследования в следующих поколениях трансгенных животных неуклонно растет (8, 6, 11, 10). В настоящее время изучены молекулярные механизмы двух этапов в процессе передачи трансгена с использованием спермы: 1) присоединения экзогенной ДНК к мембране сперматозоида и ее интернализация; 2) доставка указанной ДНК до ооцита в момент оплодотворения (16). Дальнейшая судьба доставленной ДНК представляется в виде двух вариантов: или она интегрируется в геном хозяина, или остается как структура вне хромосом. Оказалось, что липосомы, переносчики (моноклональные антитела (мат), DMSO и др.) (7, 21), электропорация, микроинъекция комплекса ДНК с липосомами значительно повышают эффективность хромосомного встраивания плазмид. Тогда как при инкубации экзогенной ДНК со сперматозоидом без переносчиков чаще всего встречается эписомное встраивание, и трансген не передается следующему поколению (22). Нам не встречались работы по инкубации плазмид со спермой петуха без переносчиков, собственные попытки проведения аналогичных экспериментов не привели к положительным результатам (4). Возможно, что выявленные различия в характере взаимодействий экзогенной ДНК со спермой при ее прямой инкубации и опосредованном переносе, и дальнейшие последствия этих событий регулируются разными молекулярными механизмами.
Так, К.Чанг с коллегами (7) создали специфические моноклональные антитела путем получения гибридомы после многократной иммунизации 6-недельных мышей сперматозоидами из эпидидимуса 12-недельных мышей. Эти мат связывались специфически со сперматозоидами различных видов животных и с плазмидной ДНК за счет электростатических взаимодействий. С помощью данного комплекса были получены трансгенные свиньи и мыши путем хирургического осеменения через яйцевод и оплодотворения in vitro, соответственно. При этом авторы наблюдали наследование и экспрессию чужеродного гена у потомков.
За последние 8 лет не появилось ни одной публикации других авторов, подтверждающих эффективность этого метода. Тогда как нами был разработан метод получения трансгенных кроликов, продуцирующих лекарственные белки в молочную железу, с использованием человеческих мат при обычном способе искусственного осеменения в отличие от хирургического осеменения или оплодотворения in vitro и (2). Авторами было проведено 10 экспериментов с ДНК (плазмидой гена человеческого гранулоцитарного колониестимулирующего фактора, ч-ГКСФ). Осеменено 18 самок, из них окролились 7 (39%). У двух самок крольчата пали. Всего получено 30 живых потомков. У 13 крольчат обнаружена интеграция гена фрагмент В-казеина-hGCSF. Выход трансгенных особей от общего числа потомства составил 43%. Самки половозрелого возраста окролилась. В молоке 4-х самок был обнаружен целевой белок - ч-ГКСФ. Установлена передача гена трансгенными кроликами, полученными с использованием человеческих моноклональных антител в следующем поколении.
Последние годы наиболее пристальное внимание исследователей было направлено на разработку технологии получения рекомбинантных протеинов из белка яйца трансгенной птицы, которое стало возможным благодаря развитию новых методов введения чужеродных генов в половые клетки этих животных. Белок яйца содержит около 4 г белка, половина которого представлена одним белком - овальбумином. Следовательно, с помощью овальбуминового промотора можно было бы получить до грамма рекомбинантного белка с 25% чистотой в стерильном естественным образом белке яйца. В отличие от крупного рогатого скота, овец, коз и кроликов было показано, что птица и человек в качестве компонентов своих гликопротеинов используют остатки сиаловой кислоты одинаковой структуры (NANA). Однако существуют значительные различия в физиологии воспроизводства кур и млекопитающих. Проблемы извлечения зиготы у птицы и ее большой размер создают трудности по инъекции чужеродных генов, в то время как сразу после снесения яйца эмбрион легкодоступен, но уже состоит из примерно 60000 клеток. Первые попытки использовать эмбриональные клетки сразу после откладки яйца, в качестве потенциальных клеток мишеней для внедрения чужеродной ДНК в половую линию птицы увенчались сначала большими надеждами, а затем долей разочарования. К успехам можно отнести разработку технологии создания половых химер кур при пересадке донорских клеток из неинкубированного яйца, затем из зародышевого серпа, крови и ранних гонад. Однако после трансфекции данных клеток не удавалось получить стабильную передачу трансгена в поколениях. Пожалуй только с использованием репликативно-дефектного ретровирусного вектора в качестве переносчика экзогенных генов были получены нескольких поколений трансгенной птицы, стабильно передающих экспрессирующий ген бактериальной β-галактозидазы в соответствии с Менделеевским распределением, но уровень экспрессии оставался низким. Человеческие моноклональные антитела (мат), полученные из яйца трансгенных кур, по своим физиологическим характеристика не уступали аналогичным, полученным с помощью таких традиционных систем, как клетки яичника хомячка (СНО) или мышиные миеломные клетки за исключением различий в профилях N-linked олигасахаридов. В отличие от трансгенных растений и млекопитающих мат, продуцируемые куриной системой, обладали повышенной ADCC, приемлемым полураспадом, несмотря на отсутствие остатка сиаловой кислоты, правильным гликозилированием, превосходным связыванием, хорошим уровнем интернализации. К тому же концентрация рекомбинантного белка также была высокой в пределах 1-3 мг на яйцо, что представлялось уже возможным использования этой технологии для коммерческого получения этого белка.
Трансгенез с использованием сперматозоидов также, как и инфекция вирусными плазмидами не требует больших финансовых затрат, однако предполагает использование невирусных конструкций генов. Действительно, использование ретро-вирусов в качестве вектора для переноса гена в организм курицы имеет целый ряд недостатков; их применение ограничивает размер гена более 8 т.н.п. сопровождается низкой экспрессией рекомбинантного белка и не лишено опасности рекомбинации ретровируса в онкогенны в организме птицы. Использование этой технологии в фармацевтической индустрии особенно привлекательно, т.к. позволяет обойти отсутствие высокой технологической квалификации и дорогостоящего оборудования, например, при получении трансгенных кур с помощью методов культивирования и трансплантации генетически модифицированных эмбриональных стволовых клеток. Поэтому разработка технологии введения чужеродного гена путем переноса со спермой открывает широкие возможности по использованию яйца кур для продукции фармацевтических белков.
Нами были использованы мат человека против рецептора трансферрина для получения трансгенной птицы опосредованным переносом гена путем обычного искусственного осеменения куриц.
Во-первых, эти антитела, как было известно, связываются со сперматозоидами человека.
Во-вторых, нами экспериментально показано их способность связываться с ДНК (2).
В-третьих, методом проточной цитометрии были выявлены человеческие моноклональные антитела (мат), специфически связывающиеся со сперматозоидами петуха. Наиболее высокий процент связывания со сперматозоидами показали мат CD71 и CD25, тогда как мат СБ95, CD38 и CD4, также специфически связывались, но лишь с небольшой популяцией сперматозоидов (табл.1).
В-четвертых, при инкубации этих антител с ДНК и с спермой петуха обычным методом искусственного осеменения нами достигнут высокий уровень интеграции гена, примерно одинаковый с тем который был получен Прокофьевым М.И. с соавторами (2) при использовании данных антител. Это также свидетельствует об участии человеческих моноклональных антител в создании комплекса ген-антитело-сперматозоид.
Осеменено 12 кур трансфецированной спермой с геном человеческого гранулоцитарного колониестимулирующего фактора (чГКСФ), было собрано 83 инкубационных яйца, из которых вылупились 26 цыплят, а 4 оказались «задохликами» (табл.2). Из 26-ти цыплят 9 оказались трансгенными, что составило 34,6% от общего количества проанализированных проб ДНК.
В сыворотки крови 7-ми цыплят из 9-ти трансгенных был обнаружен целевой белок - чГКСФ (табл.3).
В белке куриного яйца трансгенных кур был обнаружен белок - чГКСФ, его концентрация составила 5 нг/мл.
Таким образом, отличительными особенностями изобретения являются:
1. Выявление человеческих моноклональных антител для повышения эффективности переноса гена со сперматозоидами петуха в отличие от сперматозоидов кролика в прототипе (2).
2. Получение трансгенной птицы с использованием человеческих антител с высоким уровнем интеграции гена сравнимой с прототипом при получении трансгенных кроликов (34.6% против 43,3% в прототипе Прокофьевым М.И. с соавторами (2)).
3. Разработан метод получения трансгенной птицы с использованием человеческих моноклональных антител при обычном способе искусственного осеменения в отличие от искусственного осеменения кроликов в прототипе.
4. Установлена передача гена трансгенными курицами, полученными с использованием человеческих моноклональных антител в следующем поколении.
5. Продемонстрирована экспрессия гена в сыворотку крови трансгенной птицы, полученных с использованием человеческих моноклональных антител, а также экспрессия гена в белок куриного яйца трансгенной птицы. Получение трансгенных кур иллюстрируются следующими примерами:
Пример 1.
Подготовка спермы, трансфецированной ДНК в присутствии человеческих моноклональных антител и осеменение куриц.
Получение спермы от петухов осуществлялось методом Барроуса и Квина, а именно путем массажа от киля вдоль лонных костей к хвостовой части. Сперму получали в спермоприемник (маленький стаканчик с ровными краями). Разбавление спермы проводилось разбавителем, предложенным и произведенным на базе ВНИИТИП. Разбавитель представляет собой раствор, содержащий уксуснокислый натрий, глюкозу, сахарозу, бикарбонат натрия, щавелевую кислоту и дистиллированную воду. Разбавление проводили в соотношении 1:3. Готовили растворы БСА в двух концентрациях: R1 - 0,4 мг/мл и R2 - 1,5 мг/мл на основе ранее приготовленного разбавителя для спермы.
Оценку качества спермы и подсчет количества сперматозоидов производилась под микроскопом, при этом учитывалось количества сперматозоидов, их подвижность и жизнеспособность. В опыт отбирали объем спермы содержащий 500 млн сперматозоидов.
Далее сперму центрифугировали при 220 g, 5 мин. Автоматической пипеткой удаляли супернатант, добавляли 0,5 мл раствора R1, аккуратно перемешивали и снова центрифугировали в том же режиме, таким образом, мы промывали сперму от семенной жидкости.
После центрифугирования супернатант также удаляли автоматической пипеткой, добавляли 0,5 мл раствора R2, перемешивали и добавляли моноклональные антитела (НПЦ «МедБиоСпектр») в количестве 150 мкг, перемешивали переворачиванием пробирки. Далее смесь спермы с антителами инкубировали 40 мин, при комнатной температуре, покачивая через каждые 5 мин.
После инкубации смесь центрифугировали при 220 g, 5 мин супернатант удаляли автоматической пипеткой, добавляли 0,3 мл раствора R2, перемешивали и добавляли препараты ДНК в количестве 80γ, перемешивали переворачиванием пробирки. Далее смесь спермы с антителами и ДНК инкубировали 40 мин, при комнатной температуре, покачивая через каждые 5 мин.
По истечению 40 минут проводили контроль на подвижность сперматозоидов и при хороших показателях подвижности осуществляли искусственное осеменение куриц.
После осеменения проводили сбор яиц в течении 7 дней, яйца закладывали на инкубацию при 37,5-38°C и относительной влажности 60%, 21 сутки до вылупле-ния цыплят.Для выделения ДНК кровь у цыплят брали из подкожно-локтевой вены. Далее проводили анализ на интеграцию ДНК с использованием ПЦР диагностики.
Пример №2.
Получение трансгенных кур с использованием человеческих моноклональных антител.
Осеменено трансфецированными сперматозоидами 12 кур, от которых было собрано 83 инкубационных яйца, из которых вылупились 26 цыплят (31,3%). Из 26-ти цыплят 9 оказались трансгенными, что составило 34,6%.
Иммуноферментным методом было определено содержание ГКСФ человека в сыворотке крови трансгенных цыплят. Динамика экспрессии ГКСФ человека у трансгенной птицы в крови анализировалась дважды в возрасте 90 и 100 дней. При этом наблюдались изменения в динамике содержания белка ГКСФ человека в анализируемых образцах сыворотки крови. Экспрессия белка в крови полученных нами трансгенных цыплятах составила от 20 до 70 пкг/мл ГКСФ человеке, а в крови контрольных цыплят, у которых отсутствовала интеграция гена, искомый белок выявлен не был.
После достижения трансгенными половозрелости и начала яйцекладки, иммуноферментным методом было определено содержание ГКСФ человека в белке куриного яйца трансгенных куриц. Экспрессия белка ГКСФ человека в белок яйца составила 5 нг/мл, а в белке куриного яйца контрольных куриц, у которых отсутствовала интеграция гена, искомый белок выявлен не был.
Также выявлено присутствие рекомбинантного зеленого флуоресцирующего белка GFP (green fluorescent protein) в белке куриного яйца от трансгенных куриц.
Список литературы
1. Барышников А.Ю., Тоневицкий А.Г. Моноклональные антитела в лаборатории и клинике. - М.: Типография ВНТИЦ, 1997. - С.14-21.
2. Прокофьев М.И. и др. Способ получения трансгенных животных, продуцирующих белки в молочную железу. Патент №2402211С2 от 27.10.2010 г.
3. Прокофьев М.И. и др. Создание трансгенных кроликов, продуцирующих с молоком человеческий гранулоцитарный колониестимулирующий фактор. Сельскохозяйственная биология. 2003, 6, 49-54.
4. Самойлов А.В. Разработка и совершенствование методов трансфекции экзогенной ДНК в эмбриональные клетки кур. Диссертация, Москва, 2011.
5. Brackett B.G. et al. Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc. Natl. Acad. USA. 1971, 68, 353-357.
6. Celebi C. et al. Transient transmission of a transgene in mouse offspring following in vivo transfection of male germ cells. Mol. Repr. Dev. 2002, 62, Ml-A%2.
7. Chang К et al. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol. 2002, 2, 5-10.
8. Chang К.T. et al. Production of transgenic rats and mice by the testis-mediated gene transfer. J. Reprod. Dev. 1999, 45, 29-36.
9. Dyck M.K. et al. Making recombinant proteins in animals-different systems, different applications. Trends Biotechnol. 2003, 21, 394-399.
10. Harel-Markowitz E. et al. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating. J. Biol. Reprod. 2009, 80, 1046-1052.
11. He X et al. A novel method to transfer gene in vivo system. Prog. Biochem. Biophys. 2006, 33, 685-690.
12. Houdebine L.M. The methods to generate transgenic animals and to control transgene expression // J. Biotechnol. 2002, 98, 145-160.
13. Jonak J. Sperm-mediated preparation of transgenic Xenopus laevis and transgenic DNA to the next generation. Mol. Repr. Dev. 2000, 56, 298-300.
14. Khoo Y.W. Sperm-mediated gene transfer studies on zebrafish in Singapore // Mol. Reprod. Dev. 2000, 75, 278-280.
15. Lavitrano M. et al. Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice. Cell. 1989, 57, 717-723.
16. Lavitrano M. et al. Sperm-mediated gene transfer: Production of pigs transgenic for a human regulator of complement activation. Transplant. Proc. 1997, 29, 3508-3509.
17. Lavitrano M et al. The interaction of sperm cells with exogenous DNA: A role of CD4 and major histocompatibility complex class II molecules. Exp. Cell Res. 1997, 233, 56-62.
18. Markaki M. et al. Stable expression of human Growth Hormone over 50 generation in transgenic insect larvae. Transgenic Res. 2007, 16, 99-107.
19. Nakanishi A. and Iritani A. Gene transfer in the chicken by sperm-mediated methods // Mol. Repr. Dev. 1993, 36, 258-261.
20. Royer C. et al. Biosynthesis and cocoonexport of recombinant globular protein in transgenic silkworms. Transgenic Res. 2005, 14, 463-472.
21. Wang Y.J. et al. Expression of porcine growth hormone gene in transgenic rabbits as reported by green fluorescent protein. Anim. Biotechnol. 2001, 12, 101-110.
22. Wu Z. et al. Transient transgene transmission to piglets by intrauterine insemination of spermatozoa incubated with DNA fragments. Mol. Repr. Dev. 2008, 75, 26-32.
23. Zhu L. et al. Production of monoclonal antibody in eggs of chimeric chicken. Nat Biotechnol. 2005, 23, 1159-1169.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННЫХ КРОЛИКОВ, ПРОДУЦИРУЮЩИХ БЕЛКИ В МОЛОЧНУЮ ЖЕЛЕЗУ | 2007 |
|
RU2402211C2 |
СПОСОБ ТРАНСФОРМАЦИИ ГЕНОМА ПТИЦЫ | 1988 |
|
RU2022014C1 |
ФЕРМЕНТ ЛИЗОСОМАЛЬНОЙ БОЛЕЗНИ НАКОПЛЕНИЯ | 2011 |
|
RU2575074C2 |
ФЕРМЕНТ ЛИЗОСОМАЛЬНОЙ БОЛЕЗНИ НАКОПЛЕНИЯ | 2017 |
|
RU2741116C2 |
СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННЫХ ПТИЦ С ИСПОЛЬЗОВАНИЕМ ЭМБРИОНАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК | 2007 |
|
RU2473688C2 |
СПОСОБ ПОЛУЧЕНИЯ УСТАНОВИВШЕЙСЯ ЭМБРИОНАЛЬНОЙ ЗАРОДЫШЕВОЙ КЛЕТОЧНОЙ ЛИНИИ ПТИЦ, ЛИНИЯ КУРИНЫХ ЭМБРИОНАЛЬНЫХ ЗАРОДЫШЕВЫХ КЛЕТОК, СПОСОБ ПОЛУЧЕНИЯ СОМАТИЧЕСКИХ ИЛИ ПОЛОВЫХ ХИМЕР, СПОСОБ ТРАНСФЕКЦИИ ЧУЖЕРОДНОГО ГЕНА В ЭМБРИОНАЛЬНЫЕ ЗАРОДЫШЕВЫЕ КЛЕТКИ | 2000 |
|
RU2215029C2 |
СПОСОБ УВЕЛИЧЕНИЯ ПРОДУКТИВНОСТИ ПТИЦ, СЛИТЫЙ ГЕТЕРОЛОГИЧНЫЙ БЕЛОК И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1995 |
|
RU2170100C2 |
Рекомбинантный белок GBD-SSTad-SSTad, способ его получения и применения | 2019 |
|
RU2722849C1 |
СПОСОБ ПОЛУЧЕНИЯ ВИРУСА ГРИППА | 2008 |
|
RU2484136C2 |
РЕКОМБИНАНТНЫЕ ВИРУСЫ БОЛЕЗНИ МАРЕКА И ИХ ПРИМЕНЕНИЕ | 2014 |
|
RU2681889C2 |
Изобретение относится к области биотехнологии. Предложен способ получения трансгенных кур. Трансгенез осуществляют путем обычного искусственного осеменения куриц методом опосредованного переноса ДНК с помощью человеческих моноклональных антител, ассоциированных на сперматозоидах петуха. При этом используются выявленные человеческие моноклональные антитела против рецептора трансферрина. Экспрессия целевого рекомбинантного белка осуществляется клетками трансгенных кур в сыворотку крови и в белок куриного яйца. Изобретение может быть использовано для получения сложных рекомбинантных белков, необходимых для медицины и ветеринарии. 3 табл., 2 пр.
Способ получения трансгенных кур, где клетки тканей трансгенных животных экспрессируют в сыворотку крови и белок куриного яйца рекомбинантный белок, предусматривающий искусственное осеменение куриц методом опосредованного переноса ДНК с помощью человеческих моноклональных антител против рецептора трансферрина, ассоциированных на сперматозоидах петуха.
US 20090133134 A1, 21.05.2009 | |||
СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННЫХ КРОЛИКОВ, ПРОДУЦИРУЮЩИХ БЕЛКИ В МОЛОЧНУЮ ЖЕЛЕЗУ | 2007 |
|
RU2402211C2 |
US 20040255345 A1, 16.12.2004 | |||
Устройство съема и передачи деталей на токарном автомате | 1989 |
|
SU1712126A1 |
Авторы
Даты
2014-05-27—Публикация
2011-07-08—Подача