ГИБРИДНАЯ ФОТОЧУВСТВИТЕЛЬНАЯ СХЕМА (ГФС) Российский патент 2014 года по МПК H01L31/00 B82B1/00 H01J47/00 

Описание патента на изобретение RU2519052C2

Изобретение относится к области полупроводниковой электроники и может быть использовано при создании многоспектральных и многоэлементных фотоприемников.

Известны многоэлементные микроэлектронные устройства, в которых отдельные элементы чувствительного слоя, принимающие излучение в разных рабочих спектральных диапазонах, располагаются поочередно - по отдельным столбцам, что позволяет решить проблему расширения детектируемого диапазона за счет усложнения конструкции мультиплексора. Сигналы с этих элементов поступают на низкошумящие трансимпедансные усилители схемы считывания, имеют разные для каждого из двух типов приемников коэффициенты усиления и емкости ячеек накопления зарядов. ("Long-wavelength 128×128 GaAs quantum well infarared photodetector arrays" - B.F. Levine et.al., Semicjnd,. Soi. Technol. 1991, v6. С 114-C119.).

Недостатком такой конструкции является то, что для каждого из двух типов приемников приходится изготовлять свой тип усилителя, с разными коэффициентами усиления и емкостью ячеек накопления зарядов, что технологически очень сложно и существенно повышает стоимость конечного изделия.

Также известно решение, которое принято за прототип изобретения, гибридная фоточувствительная схема (ГФС), которая содержит алмазный матричный фотоприемник (МФП), не менее 4-х индиевых столбиков и кремниевый мультиплексор с чувствительными площадками, число которых равно числу индиевых столбиков (Фиг.1).

В состав МФП входят верхний полупрозрачный для ультра фиолетового (УФ) излучения плоский электрод 1, на который подается напряжение смещения, алмазная пластина 2 и нижние электроды 3 чувствительных элементов алмазного МПФ, число которых равно числу индиевых столбиков, с которых снимается сигнал. Нижние электроды 3 гальванически связаны через индиевые столбики 4 с чувствительными элементами 5 кремниевого мультиплексора 6, которые расположены на его верхней поверхности в шахматном порядке в виде прямоугольной матрицы с осями Х и Y декартовой системы координат.

Верхние контактные поверхности нижних электродов 3 гальванически соединены с нижней поверхностью алмазной пластилины 2.

Число индиевых столбиков на каждой из осей Х и Y матрицы фотоприемника не менее двух. Матрица фотоприемника по осям Х и Y имеет одинаковые шаги. (flip-chip-сборка). (Altukhov A.A., Feshchenko V.S., Mityagin A.Yu. et al. A 128×128 Pixel Ultraviolet Photodetector Based on a Diamond Sensor// Radiotekhnika i elektronika. - 2010. - v.55. - №6, p.764-768.)

Недостаток конструкции прототипа - детектирование только УФ-диапазона спектра излучения, обусловленного спектром фоточувствительности фотоприемной матрицы.

Признаки прототипа, совпадающие с признаками изобретения.

Алмазный матричный фотоприемник (МФП). Не менее четырех индиевых столбиков 4. Кремниевый мультиплексор 6 с чувствительными площадками 5, которые расположены на нем в шахматном порядке в виде прямоугольной матрицы, по числу равны числу индиевых столбиков. В состав МФП входят алмазная пластина 2 и расположенный на ней верхний плоский электрод 1 и нижние электроды 3 чувствительных элементов алмазного МФП, по числу равные числу индиевых столбиков, которые расположены под алмазной пластиной 2. Нижние контактные поверхности торцов нижних электродов 3 гальванически соединены через индиевые столбики 4 с чувствительными элементами 5 кремниевого мультиплексора 6.

Техническим результатом изобретения является увеличение диапазона и одновременная регистрация излучения в инфракрасном (ИК) и УФ-диапазонах спектра излучений.

Технический результат изобретения обеспечивается за счет легирования бором площадок 9 нижней поверхности алмазной пластины 2.

Изобретение поясняется чертежами.

На фиг.2 представлена конструкция гибридной фоточувствительной схемы (ГФС) по изобретению, где введены обозначения: 1 - верхний полупрозрачный платиновый электрод с окнами алмазного МФП (фиг.3); 2 - алмазная пластина алмазного МФП; 3 - нижние электроды чувствительных элементов алмазного МФП; 4 - индиевые столбики; 5 - чувствительные элементы кремниевого мультиплексора; 6 - кремниевый мультиплексор; 7 - падающее, измеряемое излучение; 8 - отфильтрованное ИК-излучение; 9 - площадки нижней поверхности алмазной пластины 2, легированные бором.

На фиг.3 показан вид сверху на верхний платиновый электрод 1 МПФ, где цифры в кружках означают: 1 - места напыления платины, 2 - окна в электроде для прохождения ПК-излучения.

Технический результат изобретения достигается благодаря тому, что гибридная фоточувствительная схема (ГФС) содержит МФП, не менее 4-х индиевых столбиков 4, с которых снимается сигнал, и кремниевый мультиплексор 6 с чувствительными элементами 5.

В состав МФП входят верхний плоский платиновый электрод 1, алмазная пластина 2, нижние электроды 3 чувствительных элементов алмазного МФП и легированные бором площадки 9 алмазной пластины 2, которые расположены напротив окон в электроде 1, выполненные в шахматном порядке над верхними торцами нижних четных или нечетных нижних электродов 3.

Верхние контактные поверхности нижних четных или нечетных электродов 3 гальванически соединены с нижней поверхностью алмазной пластины 2, а контактные поверхности нижних нечетных или четных электродов гальванически соединены с площадками 9, легированными бором.

Нижние электроды 3 гальванически связаны через индиевые столбики 4 с чувствительными элементами 5 кремниевого мультиплексора 6, которые расположены на его верхней поверхности в шахматном порядке в виде прямоугольной матрицы с осями Х и Y.

Число нижних электродов 3 и число чувствительных элементов 5 равно числу индиевых столбиков 4, а число легированных бором площадок 9 в два раза меньше числа индиевых столбиков 4.

Плоский верхний платиновый электрод 1 алмазного МФП служит для приема падающего измеряемого излучения, на который подается напряжение смещения. На электрод 1 через трафарет с окнами для прохождения ИК-излучения наносят, например, напылением, полупрозрачный для УФ-излучения слой платины (фиг.3).

Плоская алмазная пластина 2 предназначена для детектирования УФ- излучения, которую с требуемыми размерами вырезают из природного или искусственного алмаза или посредством выращивания алмазных пленок искусственным способом, например CVD методом из газовой фазы метан 3% - водород 97%.

Площадки 9 алмазного МФП, легированные бором, служат для детектирования ИК-излучения. Эти площадки создают путем имплантации бора в нижнюю поверхность алмазной пластины с последующей его активацией путем отжига (Риссел X., Руге И. Ионная имплантация. -М: Наука. - 1983. - 360 с.) и размещают напротив верхних контактных поверхностей нижних электродов 3. Размеры площадок 9, легированных бором, должны быть не меньше размеров контактных поверхностей электродов 3.

Нижние электроды 3 чувствительных элементов алмазного МФП служат для сбора электрического сигнала, возникшего в результате детектирования излучения в каждом отдельном фотоприемнике на алмазной пластине. Нижние электроды 3 изготавливают посредством напыления металла, например золота, на алмазную пластину 2, причем шаги по осям Х и Y равны между собой и такие же, как шаги окон в электроде 1 и чувствительных площадок 5, расположенных на мультиплексоре 6.

Индиевые столбики 4 предназначены для передачи электрического сигнала с нижних контактных поверхностей нижних электродов 3 чувствительных элементов алмазного МФП на чувствительные площадки 5 кремниевого мультиплексора 6.

Индиевые столбики 4 выполнены путем нанесения индия через маску на нижние торцы нижних электродов 3 чувствительных элементов алмазного МФП и на чувствительные элементы 5 кремниевого мультиплексора 6, с последующим их сплавлением во время сборки. Нижние контактные поверхности индиевых столбиков 4 через чувствительные площадки 5 гальванически соединены с верхней поверхностью кремниевого мультиплексора 6.

Чувствительные элементы 5, размеры которых не меньше размеров нижних торцов индиевых столбиков 4, выполнены на основе КМОП (комплементарная логика на транзисторах металл-оксид-полупроводник) технологии. (Тришенков М.А. Фотоприемные устройства и ПЗС. Обнаружение слабых оптических сигналов. - М: Радио и Связь, 1992. - 400 с.: ил.) и предназначены для ввода электрического сигнала в кремниевый мультиплексор 6.

Плоский кремниевый мультиплексор 6 осуществляет усиление, коммутацию и обработку сигналов, поступающих на его чувствительные площадки 5, и выдает электрический сигнал на системы отображения информации, при этом он изготовляется на основе КМОП технологии. (Тришенков М.А. Фотоприемные устройства и ПЗС. Обнаружение слабых оптических сигналов. - М: Радио и Связь, 1992. - 400 с.: ил.)

ГФС работает следующим образом (Фиг.2). При облучении электрода 1 широкополосным излучением 7 его УФ составляющая поглощается и вызывает в чувствительных элементах алмазного МФП фототек, который через четные или нечетные индиевые столбики 4 поступает на кремниевый мультиплексор 6 и детектируется как ультрафиолетовый сигнал. ИК-излучение 8 без поглощения проходит через окна верхнего электрода 1 и попадает на легированные бором площадки 9 алмазного МПФ, где поглощается и вызывает на чувствительных элементах алмазного МФП фототек, который через нечетные или четные индиевые столбики 4 поступает на кремниевый мультиплексор 6 и детектируется как ИК-излучение.

Принципиальным отличием предложенной конструкции от прототипа является то, что, с одной стороны, алмазный МФП задерживает все жесткое УФ-излучение (УФ-излучение задерживает алмаз, а платина частично пропускает УФ-излучение, однако, задерживает ИК-излучение). С другой стороны, ИК-излучение беспрепятственно проходит через окна верхнего электрода МФП (фиг.3) и детектируется на легированных бором площадках 9 алмазного МФП.

На основании изложенного можно утверждать, что отличия предложенного устройства от аналогов являются существенными, поскольку в указанном сочетании они обеспечивают технический результат - расширение детектируемого диапазона. Для создания ГФС практически на всех этапах могут быть использованы стандартные технологические процессы, что говорит о возможности ее промышленного применения.

Пример реализации ГФС.

Был изготовлен и испытан опытный образец ГФС.

Верхний электрод 1 алмазного МФП выполнен путем напыления платины толщиной 0,00004 мм, имеет габариты 4,2×4,2 мм и прямоугольную форму, представленную на фиг.3.

Алмазная пластина 2 прямоугольной формы вырезана из природного алмаза IIа типа и имеет ширину и длину, равные размерам электрода 1, а толщину равную 0,3 мм.

Нижние электроды 3 выполнены путем напыления золота толщиной 0,001 мм и имеют габариты: 0,02×0,02 мм.

Индиевые столбики 4 имеют габариты: ширина 0,015 мм, длина 0,015 мм и высота 0,008 мм.

Чувствительные площадки 5 кремниевого мультиплексора имеют габариты: ширина × длина × толщина = 0,015×0,015×0,02 мм.

Легированные бором области имеют габариты: ширина × длина × толщина = 0,02×0,02×0,001 мм.

Кремниевый мультиплексор 6 имеет габариты: 10,03×10,85×5 мм.

Технические характеристики опытного образца ГФС.

Спектральный диапазон чувствительности, мкм УФ-канал 0,19-0,23 ИК-канал 0,8-3,3 Порог чувствительности, Вт/Гц1/2 УФ-канал 9·10-12 Видимый и ИК-канал 6·10-10

Технический результат изобретения достигнут - расширен детектируемый диапазон излучения с 33 нм до 2533 нм (около 75 раз) за счет одновременной регистрации изображения в УФ и ИК-спектре частот излучений.

Отличительные признаки изобретения

На нижней стороне алмазной пластины 2 сформированы в шахматном порядке легированные бором площадки 9.

Верхние контактные поверхности нижних четных или нечетных электродов 3 гальванически соединены с нижней поверхностью алмазной пластины 2.

Верхние контактные поверхности нижних нечетных или четных электродов гальванически соединены с площадками 9, легированными бором.

Похожие патенты RU2519052C2

название год авторы номер документа
ГИБРИДНАЯ ФОТОЧУВСТВИТЕЛЬНАЯ СХЕМА (ГФС) 2012
  • Гуляев Юрий Васильевич
  • Митягин Александр Юрьевич
  • Чучева Галина Викторовна
  • Афанасьев Михаил Сергеевич
  • Фещенко Валерий Сергеевич
  • Шепелев Валерий Андреевич
  • Алтухов Андрей Александрович
RU2504043C1
ГИБРИДНАЯ ФОТОЧУВСТВИТЕЛЬНАЯ СХЕМА 1997
  • Аветисян Г.Х.
  • Залевский И.Д.
  • Куликов В.Б.
RU2125321C1
МНОГОЭЛЕМЕНТНЫЙ ИК ФОТОПРИЕМНИК 2012
  • Филачев Анатолий Михайлович
  • Болтарь Константин Олегович
  • Бурлаков Игорь Дмитриевич
  • Патрашин Александр Иванович
  • Яковлева Наталья Ивановна
RU2519024C1
Способ изготовления многоэлементного ИК фотоприемника 2016
  • Седнев Михаил Васильевич
  • Лопухин Алексей Алексеевич
  • Атрашков Антон Станиславович
RU2628449C1
ФОТОПРИЕМНОЕ УСТРОЙСТВО 2003
  • Гусаров А.В.
  • Володин Е.Б.
  • Ларцев И.Ю.
  • Смолин О.В.
  • Сусов Е.В.
RU2244365C1
ПЛАНАРНЫЙ ДВУХСПЕКТРАЛЬНЫЙ ФОТОЭЛЕКТРОННЫЙ УМНОЖИТЕЛЬ 2018
  • Белянченко Сергей Александрович
  • Ильичёв Эдуард Анатольевич
  • Ильевский Валентин Александрович
  • Куклев Сергей Владимирович
  • Кулешов Александр Евгеньевич
  • Соколов Дмитрий Сергеевич
  • Рычков Геннадий Сергеевич
  • Теверовская Екатерина Григорьевна
  • Чистякова Наталья Юрьевна
  • Якушев Сергей Станиславович
  • Петрухин Георгий Николаевич
RU2692094C1
Способ изготовления матричного фотоприемника 2019
  • Седнев Михаил Васильевич
  • Трухачев Антон Владимирович
  • Атрашков Антон Станиславович
RU2749957C2
Матричный преобразователь 2020
  • Гибин Игорь Сергеевич
  • Котляр Петр Ефимович
RU2764397C1
ОДНОКАНАЛЬНЫЙ ДВУХСПЕКТРАЛЬНЫЙ ПРИЕМНИК ИЗОБРАЖЕНИЙ ОБЪЕКТОВ, ИЗЛУЧАЮЩИХ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ 2022
  • Беспалов Владимир Александрович
  • Золотухин Павел Анатольевич
  • Ильичев Эдуард Анатольевич
  • Петрухин Георгий Николаевич
  • Попов Александр Владимирович
  • Рычков Геннадий Сергеевич
RU2792809C1
Способ получения распределения чувствительности по площади пикселя матричного фотоприёмника 2022
  • Болтарь Константин Олегович
  • Акимов Владимир Михайлович
  • Арбузов Максим Алексеевич
  • Лопухин Алексей Алексеевич
RU2783220C1

Иллюстрации к изобретению RU 2 519 052 C2

Реферат патента 2014 года ГИБРИДНАЯ ФОТОЧУВСТВИТЕЛЬНАЯ СХЕМА (ГФС)

Изобретение относится к области полупроводниковой электроники и может быть использовано при создании многоспектральных и многоэлементных фотоприемников. Гибридная фоточувствительная схема содержит алмазный матричный фотоприемник (МФП), индиевые столбики и кремниевый мультиплексор с чувствительными площадками, расположенными на нем в шахматном порядке в виде прямоугольной матрицы и по числу равными числу индиевых столбиков. В состав МФП входят алмазная пластина и расположенный на ней верхний плоский электрод, а также нижние электроды чувствительных элементов МФП, по числу равные числу индиевых столбиков, расположенных под алмазной пластиной. На нижней стороне алмазной пластины сформированы в шахматном порядке легированные бором площадки, верхние контактные поверхности четных или нечетных нижних электродов гальванически соединены с нижней поверхностью алмазной пластилины, а верхние контактные поверхности нечетных или четных нижних электродов гальванически соединены с площадками, легированными бором. Нижние контактные поверхности нижних электродов через индиевые столбики гальванически соединены с чувствительными элементами кремниевого мультиплексора. Изобретение обеспечивает расширение детектируемого диапазона излучения в 75 раз за счет одновременной регистрации изображения в УФ и ИК-спектре частот излучений. 3 ил.

Формула изобретения RU 2 519 052 C2

Гибридная фоточувствительная схема, содержащая алмазный матричный фотоприемник (МФП), не менее четырех индиевых столбиков (4) и кремниевый мультиплексор (6) с чувствительными элементами (5), расположенными на нем в шахматном порядке в виде прямоугольной матрицы и по числу равными числу индиевых столбиков, причем в состав МФП входят алмазная пластина (2), расположенный на ней верхний плоский электрод (1) и нижние электроды (3) чувствительных элементов алмазного МФП, по числу равные числу индиевых столбиков, расположенных под алмазной пластиной, кроме того, нижние электроды (3) гальванически соединены через индиевые столбики (4) с чувствительными элементами (5) кремниевого мультиплексора (6), отличающаяся тем, что на нижней стороне алмазной пластины (2) сформированы в шахматном порядке легированные бором площадки (9), верхние контактные поверхности четных или нечетных нижних электродов (3) гальванически соединены с нижней поверхностью алмазной пластилины (2), а верхние контактные поверхности нечетных или четных нижних электродов (3) гальванически соединены с площадками 9, легированными бором.

Документы, цитированные в отчете о поиске Патент 2014 года RU2519052C2

Altukhov A.A., et al
Сепаратор-центрофуга с периодическим выпуском продуктов 1922
  • Андреев-Сальников В.Д.
SU128A1
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Устройство двукратного усилителя с катодными лампами 1920
  • Шенфер К.И.
SU55A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБРИДНОЙ ФОТОДИОДНОЙ МАТРИЦЫ НА АНТИМОНИДЕ ИНДИЯ 1994
  • Туринов Валерий Игнатьевич
RU2069028C1
ГИБРИДНАЯ ФОТОЧУВСТВИТЕЛЬНАЯ СХЕМА 1997
  • Аветисян Г.Х.
  • Залевский И.Д.
  • Куликов В.Б.
RU2125321C1
ФОТОВОЛЬТАИЧЕСКИЙ ПРИЕМНИК УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА НА ОСНОВЕ АЛМАЗА 2003
  • Алтухов Андрей Александрович
  • Гаврилов Вадим Викторович
  • Ерёмин Владимир Викторович
  • Киреев Виктор Андреевич
  • Митёнкин Анатолий Валерианович
  • Мироненко Ирина Александровна
  • Шустров Александр Викторович
RU2270494C2
RU23008787C1, 20.10.2007
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЧНОГО ФОТОПРИЕМНИКА (ВАРИАНТЫ) 2011
  • Болтарь Константин Олегович
  • Киселева Лариса Васильевна
  • Лопухин Алексей Алексеевич
  • Савостин Александр Викторович
RU2460174C1
СПОСОБ УПЛОТНЕНИЯ РЫХЛОСТЕЙ ЧУГУННЫХ И СТАЛЬНЫХ ОТЛИВОК 1937
  • Рождественский П.А.
SU52959A1

RU 2 519 052 C2

Авторы

Гуляев Юрий Васильевич

Митягин Александр Юрьевич

Чучева Галина Викторовна

Афанасьев Михаил Сергеевич

Фещенко Валерий Сергеевич

Шепелев Валерий Андреевич

Даты

2014-06-10Публикация

2012-09-27Подача