СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ Российский патент 2014 года по МПК C01B3/08 C25B1/02 

Описание патента на изобретение RU2520490C2

Изобретение относится к области химической технологии, а более конкретно к способам и устройствам для получения водорода путем экзотермической реакции водяного пара с металлами.

Известен способ и устройство получения водорода электролизом воды, где электролитом служит водный раствор KOH (350-400 г/л), давление в элекролизерах от атмосферного до 4 МПа (Химическая энциклопедия в 5 томах под редакцией Н.П. Кнунянца. - М.: Сов. энциклопедия, 1988 г., т.1, с.401).

Производительность электролизеров в известном способе составляет 4-500 м3/ч, а расход электроэнергии для получения 1 м3 водорода равен 4,0-5,6 кВт/ч.

Недостатком известного способа является большой расход электроэнергии.

Известен способ получения водорода методом конверсии, которым в настоящее время получают более половины промышленного водорода (Путилова И.Н. Курс общей химии. Высшая школа, 1964, с.208). Этот способ включает получение водяного газа (смеси СО и H2) из кокса и водяного пара при температуре 1000°C (C+H2O=CO-H2).

Чистый водород получают, используя реакцию СО и H2O в присутствии катализатора Fe2O3 (CO+H2O=CO2+H2). Образующуюся смесь H2, CO2 и СО растворяют в воде под давлением.

Данный способ, несмотря на относительную дешевизну, многостадиен, экологически ущербен и сложен в управлении.

Известен способ и устройство получения водорода при химической реакции воды (H2O) и алюминия (Al), в результате которой получается водород (H2) как топливо и гидроокись алюминия (AlOH) как сырье, пригодное для дальнейшей переработки и использования в промышленных целях:

Al+3H2O=Al(ОН)3+1,5H2.

В обычных условиях эта реакция не протекает из-за наличия на поверхности алюминия очень тонкой, но большой плотности оксидной пленки, образующейся почти мгновенно по реакции:

2Al+1,5O2=Al2O3.

В известном способе и устройстве используют сплав алюминия и едкого натра, благодаря которому оксидная пленка вокруг алюминия растворяется, и к поверхности алюминия открыт доступ для воды (патенты РФ МПК С01В 3/08, №2407701, опубл. 27.12.2010, №2410325, опубл. 27.01.2011). В качестве растворителя в данном сплаве используется щелочь, а именно едкий натр (NaOH):

2Al+2NaOH+10H2O=2Na[Al(OH)4(H2O)2]+3Н2.

Недостатком известного способа и устройства является использование химически вредного вещества - щелочи для получения водорода.

Известен способ получения водорода, заключающийся в подаче в реактор металлосодержащих веществ и водной среды и последующем осуществлении взаимодействия металлосодержащих веществ с водной средой, в котором перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой, а при осуществлении взаимодействия с водной средой в качестве последней используют водную среду, параметры которой соответствуют параметрам ее сверхкритического состояния для обеспечения возможности создания процесса послойного горения металлосодержащих веществ с выделением водорода. В качестве металлосодержащих веществ используют порошкообразный алюминий, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте, а давление сверхкритического состояния водной среды составляет более 22,12 МПа, температура - более 647,3K (Мазалов Ю.А. Способ получения водорода. Патент РФ №2165888, опубл. 20.04.2001).

Недостатком известного способа является необходимость использования ультрадисперсного порошка алюминия с размером частиц 0,2 мкм, а также высокое давление и большая температура в реакторе, что увеличивает затраты энергии и создает проблемы безопасности при осуществлении процесса.

Задачей, на решение которой направлен предлагаемый способ и устройство, является безопасное экологически чистое получение водорода путем одностадийной реакции с возможностью регенерации исходного сырья.

Технический результат от использования заключается в реализации прямого окисления металла без предварительного его нагревания, требующего энергозатрат и использования растворов щелочи в воде.

Вышеуказанный технический результат достигается за счет того, что в способе получения водорода путем подачи в реактор металла с водяной средой согласно изобретению металл изолируют от стенок реактора и подают на него высоковольтный потенциал напряжением 1-100 кВ и частотой 1-100 кГц от трансформатора Тесла и с помощью микроплазменных разрядов в воде удаляют с поверхности металла окисную пленку и активизируют реакцию водного окисления металлов.

В варианте способа получения водорода в качестве металла используют алюминий.

В другом варианте способа получения водорода в качестве металла используют магний.

Еще в одном варианте способа получения водорода в качестве металла используют сплав алюминия с магнием.

В устройстве для получения водорода из воды, содержащем реактор с металлом с водяной средой с патрубками для подвода воды, отвода водорода и продуктов реакции окисления металла, металл помещен в контейнер, электроизолированный от стенок реактора, и соединен через проходной изолятор с высоковольтным резонансным высокочастотным трансформатором Тесла и источником электрической энергии с напряжением на высоковольтном выводе трансформатора 1-100 кВ и частотой 1-100 кГц.

В варианте устройства для получения водорода из воды в качестве образцов металла используют пластины, обрезки, стружку и опилки из алюминия, магния и сплавов алюминия с магнием.

Способ и устройство для получения водорода из воды иллюстрируется фиг.1, на которой представлена блок-схема для получения водорода.

Реактор 1 для получения водорода содержит корпус 2 с устройством заземления 3, проходным изолятором 4 с электрическим выводом 5, который внутри реактора 1 соединен с контейнером 6 и со стенками 7 из металлической сетки. Контейнер 6 установлен на изоляторах 8 внутри реактора 1 и содержит металл 9 из алюминия. Реактор 1 содержит патрубок 10 для подачи воды, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления, содержащих окислы алюминия. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который присоединен к высокочастотному источнику питания 17.

Способ и устройство для получения водорода из воды реализуется следующим образом. При подаче потенциала от высоковольтного вывода 13 трансформатора Тесла 14 на металл 9 на поверхности металла 9 возникают плазменные высокочастотные разряды, которые разрушают пленку окислов на поверхности металла, и происходит реакция водного окисления металла с водой с выделением водорода. Согласно реакции водного окисления алюминия:

2Al+3H2O=Al2(ОН)3+3H2+921,8 кДж.

При окислении 1 кг алюминия получают 17,1 МДж тепла и 1,4 м3 водорода, а также 2 кг оксидов и гидрооксидов алюминия. При сжигании полученного водорода тепловая энергия увеличивается до 30,57 МДж/кг и превышает энергозатраты на регенерацию алюминия из оксида алюминия, которые составляют 26,3 МДж/кг. Скорость реакции окисления алюминия в воде и выделения водорода регулируется изменением потенциала от трансформатора Тесла 14.

Кроме реакции водного окисления металла происходит электролиз воды, что увеличивает выход водорода из реактора 1.

Пример осуществления способа и устройства получения водорода из воды.

Реактор 1 представляет цилиндрическую емкость из нержавеющей стали диаметром 200 мм и высотой 400 мм с толщиной стенок 0,6 мм. Внутри корпуса реактора 1 на изоляторах 8 установлен контейнер 6 со стенками из сетки из алюминия. В качестве образцов металла 9 использую пластины, обрезки, стружку и опилки из алюминия. Напряжение на высоковольтном электроде трансформатора Тесла составляет 10 кВ, частота 25 кГц, выход водорода 1 м3/ч.

Использование предложенного способа позволит снизить энергозатраты при производстве водорода, повысить управляемость и безопасность процесса, а также осуществлять регенерацию исходного сырья. Изобретение может быть использовано в промышленности для получения водорода и на транспорте. При добавке водорода в количестве 5% к топливу количество вредных примесей в выхлопе двигателя внутреннего сгорания снижается в 10 раз, повышается кпд двигателя и снижается расход топлива на 8-10%. Использование водорода как 100% топлива в двигателе Стирлинга, газотурбинном двигателе или в топливных элементах позволяет исключить вредные выбросы и обеспечить движение электромобиля без подзарядки аккумуляторов на расстояние до 500 км.

Похожие патенты RU2520490C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ) 2012
  • Стребков Дмитрий Семенович
  • Староверов Всеволод Владимирович
RU2509719C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА 2000
  • Мазалов Ю.А.
RU2165388C1
Способ и устройство получения экологически чистого водного раствора пероксида водорода (варианты) 2021
  • Стребков Дмитрий Семенович
RU2754009C1
УСТРОЙСТВО И СПОСОБ ДЛЯ ПОЛУЧЕНИЯ ГАЗОВОГО ВОДОРОДНО-КИСЛОРОДНОГО ТОПЛИВА ИЗ ВОДЫ (ВАРИАНТЫ) 2012
  • Стребков Дмитрий Семенович
RU2515884C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2000
  • Стребков Д.С.
  • Авраменко С.В.
  • Некрасов А.И.
RU2172546C1
СПОСОБ СЖИГАНИЯ МЕТАЛЛОСОДЕРЖАЩЕГО ТОПЛИВА 2000
RU2158396C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА 2010
  • Носырев Дмитрий Яковлевич
  • Плетнев Александр Игоревич
RU2429191C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2003
  • Стребков Д.С.
RU2245598C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2013
  • Стребков Дмитрий Семенович
RU2533060C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2013
  • Стребков Дмитрий Семенович
RU2544380C2

Реферат патента 2014 года СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ

Изобретение относится к области химии. Реактор 1 для получения водорода содержит корпус 2, патрубок 10 для подачи воды, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления. Внутри реактора 1 расположен контейнер 6 с металлом 9, который установлен на изоляторах 8. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который присоединен к высокочастотному источнику питания 17. При подаче потенциала от высоковольтного вывода 13 трансформатора Тесла 14 на металл 9 на поверхности металла возникают плазменные высокочастотные разряды, которые разрушают пленку окислов на поверхности металла, и происходит реакция водного окисления металлосодержащего вещества с водой с выделением водорода. Изобретение позволяет снизить энергозатраты. 2 н. и 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 520 490 C2

1. Способ получения водорода путем подачи в реактор металла с водяной средой, отличающийся тем, что металл изолируют от стенок реактора и подают на него высоковольтный потенциал от трансформатора Тесла с напряжением 1-100 кВ при частоте 1-100 кГц и с помощью микроплазменных разрядов в воде удаляют с поверхности металла окисную пленку и активизируют реакцию водного окисления металлов.

2. Способ получения водорода по п.1, отличающийся тем, что в качестве металла используют алюминий.

3. Способ получения водорода по п.1, отличающийся тем, что в качестве металла используют магний.

4. Способ получения водорода по п.1, отличающийся тем, что в качестве металла используют сплав алюминия с магнием.

5. Устройство для получения водорода из воды, содержащее реактор с металлом с водяной средой с патрубками для подвода воды, отвода водорода и продуктов реакции окисления металла, отличающееся тем, что металл помещен в контейнер, электроизолированный от стенок реактора, и соединен через проходной изолятор с высоковольтным резонансным высокочастотным трансформатором Тесла, с источником электрической энергии с напряжением на высоковольтном выводе трансформатора 1-100 кВ и частотой 1-100 кГц.

6. Устройство для получения водорода из воды по п.5, отличающееся тем, что в качестве образцов металла используют пластины, обрезки, стружку и опилки из алюминия, магния и сплавов алюминия с магнием.

Документы, цитированные в отчете о поиске Патент 2014 года RU2520490C2

US 6800258 B2, 05.10
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПОРОШКОВ 1987
  • Рудник Г.И.
  • Карвовский В.Б.
  • Рудник Л.Д.
  • Горожанкин Э.В.
SU1445111A1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА 2000
  • Мазалов Ю.А.
RU2165388C1
KR 20080103467 A, 27.11.2008;
WO 2009011671 A1, 22.01
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Паровой котел 1984
  • Достияров Абай Мухамедиярович
  • Аспандияров Булат Билялович
  • Киричков Александр Владимирович
SU1209991A2
Термоорерыватель для контроля процесса контактной точечной сварки 1956
  • Билев К.К.
  • Варятин Г.С.
  • Годин Б.М.
  • Ильин Б.В.
  • Полунин В.В.
  • Соколовский Н.И.
SU111573A1

RU 2 520 490 C2

Авторы

Стребков Дмитрий Семенович

Баранский Виктор Сергеевич

Трубников Владимир Захарович

Даты

2014-06-27Публикация

2012-06-08Подача