Изобретение относится к области химической энергетики, в частности к способам получения тепловой и кинетической энергии путем экзотермической химической реакции с использованием химически связанного кислорода. Оно может быть использовано в различных областях промышленности.
Известен способ получения тепловой энергии при сжигании термитных составов, а именно смеси стехиометрических количеств металлов или сплавов, используемых в качестве горючего, с оксидами менее активных металлов - в качестве окислителя.
В качестве основного горючего могут быть использованы Al, Mg, сплавы Ca-Si, Cu-AI, Fe-Mn, а в качестве окислителей Fe2O3, Fe3O4, CuO, NiO, Pb3O4, MnO2 [1].
Недостатком известного способа [1] является невозможность регулирования процесса окисления металла, так как экзотермическая окислительно-восстановительная реакция после поджигания идет самопроизвольно до полного сгорания термитного состава, а также невозможность его использования для получения газообразного рабочего тела.
Известен также способ сжигания металлосодержащих горючих в составе гибридных топлив, компоненты которых находятся в разных агрегатных состояниях (твердое, жидкое или газообразное). Сжигание металлосодержащих горючих осуществляется после их диспергирования в газовую фазу газообразными окислителями (кислород, хлор, фтор) [2].
В способе [2] металлосодержащее горючее, например гидрид лития, алюминий находится в виде заряда твердого топлива и подается в камеру сгорания с потоком жидких или газообразных компонентов. При этом жидкие и газообразные компоненты хранятся вне камеры сгорания в специальных емкостях.
В данном способе [2] можно регулировать процесс горения, изменяя скорость подачи жидких или газообразных компонентов в камеру сгорания.
Однако известный способ [2] очень сложен в осуществлении, так как реализующая его конструкция требует отдельных емкостей для хранения жидких или газообразных компонентов, заборных устройств для забортных окислителей, системы подачи и распыла жидких и газообразных компонентов, системы охлаждения камеры сгорания.
Наиболее близким по числу общих признаков и технической сущности является способ сжигания металлосодержащих горючих, в котором осуществляется подача воды в камеру сгорания и окисление металла [3].
В известном способе [3], реализуемом при работе гидроракетного двигателя с использованием воды и заряда гидрореагирующего топлива, в качестве компонентов которого используют гетерогенные смеси металлического горючего, неорганических окислителей (нитраты или перхлораты щелочных металлов) и полимерных горючих связующих.
Продукты горения заряда твердого топлива содержат большое количество несгоревшего металлического горючего, которое дожигается забортной водой, подаваемой в камеру сгорания.
При работе гибридного двигателя, реализующего способ [3], заряд твердого топлива воспламеняется специальным устройством, а затем в камеру сгорания подается вода для дожигания продуктов неполного сгорания металла.
Работа двигателя регулируется скоростью подачи воды и прекращается после полного сгорания заряда твердого топлива.
Сжигание металлических горючих гидрореагирующих составов позволяет получать большое количество тепла и рабочего тела.
Основным недостатком способа [3] сжигания гидрореагирующих составов является двухстадийность окисления металлов, сначала продуктами разложения основного окислителя, а затем водой. При этом на первой стадии происходит интенсивная агломерация металлических частиц, что приводит к высоким химическим и газодинамическим потерям. Наличие первичного окислителя необходимо для зажигания (активации) частицы металла, что обеспечивает протекание вторичной химической реакции металла с водой. Таким образом, из-за применения в данном способе [3] неорганических окислителей, особенно хлорсодержащих, он отличается сложностью, взрывo- и экологической опасностью.
Вышеназванный способ [3] принят в качестве ближайшего аналога.
Задачей, на решение которой направлен предлагаемый способ, является получение большого количества тепловой и кинетической энергии простым и безопасным путем прямого сжигания металлосодержащих горючих в водных средах.
Технический результат от использования заявленного способа заключается в обеспечении возможности регулирования скорости процесса сжигания и полноты сгорания металлосодержащего горючего. Так, например, при сжигании 1 кг алюминия предложенным способом можно добиться выделения 15 МДж тепла и 110,16 г водорода.
Вышеуказанный технический результат достигается за счет того, что при сжигании металлосодержащего топлива, включающем подачу воды в камеру сгорания и окисление металла, согласно изобретению в качестве горючего используют металлосодержащие вещества, покрытые водорастворимой полимерной пленкой, а в качестве окислителя используют водную среду при сверхкритических параметрах состояния.
Известно, что вода является окислителем для многих металлов [4]. Например, 2Al + 3H2O = Al2O + ЗН2 + 921,8 кДж.
Однако плотная оксидная пленка, образующаяся при контакте с кислородом воздуха, создает диффузионные ограничения окислению алюминия даже в кипящей воде.
Известно также, что при сверхкритических параметрах состояния, а именно при давлении более 22,12 МПа и температуре более 647,3 К, вода может использоваться для окисления органических и неорганических веществ [5].
Однако эти реакции, протекая в водной среде, требуют дополнительного окислителя, например кислорода и кислородосодержащих соединений.
В предложенном способе заряд не содержит окислителя, а сжигание обеспечивается при прямом контакте водной среды, находящейся в сверхкритическом состоянии с поверхностью твердого горючего, покрытого водорастворимой полимерной пленкой.
Заявителем не обнаружено технических решений, содержащих операцию покрытия водорастворимой пленкой металлосодержащих веществ, а также общую совокупность существенных признаков, указанных в формуле изобретения, что позволяет сделать вывод о соответствии заявленного способа критериям "новизна" и "изобретательский уровень".
Сущность способа заключается в том, что при> сжигании металлосодержащего топлива в качестве горючего используют металлосодержащие вещества, покрытые водорастворимой полимерной, например полиэтиленоксидной пленкой, а в качестве окислителя используют водную среду при сверхкритических параметрах состояния, то есть при давлении более 22,12 МПа и температуре 647,3 К.
При попадании водной среды на полимерную пленку последняя растворяется и металлосодержащие вещества вступают в реакцию с молекулами воды, которые при сверхкритических параметрах находятся на значительно больших расстояниях, чем в жидкой воде.
При этом почти полностью разрушаются водородные связи и молекулы воды не проявляют взаимосвязанности.
В водных средах при сверхкритических параметрах состояния коэффициенты диффузии очень велики, а сопротивление массообмену практически отсутствует, так что обеспечиваются все условия для быстрого протекания реакций.
В качестве примера реализации способа приводится процесс сжигания пирофорного (самовоспламеняющегося на воздухе) ультрадисперсного порошка алюминия со средним размером частиц 0,2 мкм, полученного, например, методом электродуговой плазменной переконденсации в среде инертного газа аргон. Полученный вышеуказанным методом порошок ультрадисперсного алюминия покрывают пленкой водорастворимого полимера, например полиэтиленоксидом, в смесителе якорного типа.
Полученную массу гранулируют и формуют до необходимых размеров методом глухого прессования по технологии, используемой для пиротехнических составов.
Затем полученный заряд металлосодержащего горючего массой 500 г помещают в закрытый реактор цилиндрической формы объемом 25 л, в который после его герметизации подается водная среда - 500 г парообразной воды с температурой более 647,3 К под давлением 25 МПа.
После подачи водной среды происходит растворение полиэтиленоксидной пленки на поверхности заряда и начинается процесс послойного горения с выделением тепловой и кинетической энергии.
Если в качестве горючего используется непирофорный высокодисперсный порошок гидрида алюминия со средним размером частиц 50 мкм, то его, так же как в вышеописанном примере, покрывают водорастворимой пленкой из полиэтиленоксида в смесителе якорного типа, гранулируют и методом глухого прессования получают заряд цилиндрической формы.
Заряд массой 526,3 г помещают в закрытый реактор объемом 45 л и после его герметизации подают 473,7 г парообразной воды с температурой более 647,3 К под давлением 25 МПа.
Предложенный способ может использоваться и при сжигании металлосодержащих горючих в водных средах в условиях открытого реактора. В этом случае процесс протекает при постоянном давлении, если скорость газообразования равна скорости истечения продуктов реакции. Давление в камере сгорания открытого реактора регулируется скоростью подачи водной среды и поверхностью контакта (поверхностью горения) с твердым металлическим горючим, а также характеристиками соплового блока. Истечение продуктов сжигания может осуществляться в замкнутый объем с аккумуляцией давления или в свободный объем в виде реактивной струи. В остальном процесс сжигания не отличается от организации работы замкнутого реактора.
Использование предложенного способа позволяет производить прямое преобразование тепловой энергии продуктов сгорания в кинетическую.
Источники информации
1. Химическая энциклопедия под редакцией Н.С.Зефирова. - М.: Большая Российская энциклопедия, 1995, т.4, с. 532,533.
2. Краткий энциклопедический словарь. - М.: Янус-К, 1999, с. 136,137.
3. В.Е.Алемасов и др. Теория ракетных двигателей. - М.: Машиностроение, 1989, с. 434,435.
4. Химическая энциклопедия под редакцией И.Л.Кнунянца. -М.: Советская энциклопедия, 1990, т.1, с. 116, 117, 394-397.
5. Химическая энциклопедия под редакцией И.Л.Кнунянца. - М.: Советская энциклопедия, 1990, т.2, с. 540-543.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2000 |
|
RU2165388C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СОСТАВА | 2000 |
|
RU2162755C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СОСТАВА | 2003 |
|
RU2241721C1 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДОВ ИЛИ ОКСИДОВ АЛЮМИНИЯ И ВОДОРОДА | 2003 |
|
RU2223221C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ | 2012 |
|
RU2520490C2 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ГИДРООКИСИ АЛЮМИНИЯ И ВОДОРОДА | 2007 |
|
RU2350563C2 |
СПОСОБ ОБЪЕМНОГО ПОЖАРОТУШЕНИЯ | 1996 |
|
RU2087170C1 |
СПОСОБ ГАЗИФИКАЦИИ УГЛЯ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И СИНТЕЗ-ГАЗА (ВАРИАНТЫ) | 2007 |
|
RU2354820C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ) | 2012 |
|
RU2509719C1 |
СПОСОБ ОБРАБОТКИ ПРОДУКТИВНОГО ПЛАСТА И ЗАРЯД | 2000 |
|
RU2176728C1 |
Предназначено для получения тепловой и кинетической энергии путем экзотермической реакции с использованием химически связанного кислорода. Сущность изобретения заключается в том, что при сжигании металлосодержащего топлива в качестве горючего используют покрытые водорастворимой полимерной пленкой металлосодержащие вещества, а в качестве окислителя используют водную среду при давлении более 22,12 МПа и температуре выше 647,3 К, т.е. сверхкритических параметрах ее состояния. Это позволяет добиться получения большого количества тепловой и кинетической энергии при регулируемой скорости процесса сжигания металлосодержащего топлива.
Способ сжигания металлосодержащего топлива, заключающийся в подаче в камеру сгорания металлосодержащего горючего и воды и окислении металла, отличающийся тем, что в качестве горючего используют металлосодержащие вещества, покрытые водорастворимой полимерной пленкой, а в качестве окислителя используют водную среду при сверхкритических параметрах состояния.
АЛЕМАСОВ В.Е | |||
и др | |||
Теория ракетных двигателей | |||
- М.: Машиностроение, 1989, с.434, 435 | |||
Способ нагревания жидкостей | 1972 |
|
SU954735A1 |
СИСТЕМЫ И СПОСОБЫ ЛЕЧЕНИЯ ПОВЕРХНОСТИ СЛИЗИСТЫХ ОБОЛОЧЕК | 2001 |
|
RU2349321C2 |
БЫСТРОДЕЙСТВУЮЩИЙ НАГРЕВАТЕЛЬ И НАГРЕВАТЕЛЬНОЕ УСТРОЙСТВО | 1989 |
|
RU2015460C1 |
ПИРОТЕХНИЧЕСКИЙ СОСТАВ | 1993 |
|
RU2091359C1 |
Даты
2000-10-27—Публикация
2000-04-04—Подача