СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА Российский патент 2001 года по МПК C01B3/10 

Описание патента на изобретение RU2165388C1

Изобретение относится к области химической технологии, а более конкретно к способам получения водорода путем экзотермической реакции водяного пара с металлами.

Известен способ получения водорода электролизом воды, где электролитом служит водный раствор КОН (350-400 г/л). Давление в элекролизерах от атмосферного до 4 МПа [1].

Производительность электролизеров в известном способе составляет 4-500 кубических метра в час, а расход электроэнергии для получения 1 куб.м водорода равен 5,1-5,6 кВт/ч.

Недостатком способа [1] является большой расход электроэнергии.

Известен способ получения водорода методом конверсии, которым в настоящее время получают более половины промышленного водорода [2].

Этот способ включает получение водяного газа (смеси CO и H2) из кокса и водяного пара при температуре 1000oC (C+H2O = CO-H2).

Чистый водород получают, используя реакция CO и H2O в присутствии катализатора Fe2O3 (CO+H2O=CO2+H2. Образующуюся смесь H2, CO2 и CO растворяют в воде под давлением.

Данный способ, несмотря на относительную дешевизну, многостадиен, экологически ущербен и сложен в управлении.

Наиболее близким по технической сущности и числу общих признаков является способ, принятый в качестве прототипа и заключающийся в реакционном взаимодействии водяного пара с металлами, например взаимодействие водяного пара с раскаленным железом [3] . Реакция выглядит следующим образом: 4H2O+3Fe=Fe3O4+4H2.

Образующийся оксид Fe3O4 может быть легко восстановлен генераторным газом.

Недостатком известного способа является ограниченность его использования в промышленности из-за энергозатратности и сложности технологического процесса.

Задачей, на решение которой направлен предлагаемый способ, является безопасное, экологически чистое получение водорода путем одностадийной реакции с возможностью регенерации исходного сырья.

Технический результат от использования заявленного способа заключается в реализации прямого окисления металлосодержащего вещества без предварительного его нагревания, требующего энергозатрат.

Вышеуказанный технический результат достигается за счет того, что при получении водорода путем подачи в реактор металлосодержащих веществ с водяной средой согласно изобретению перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой, а при осуществлении взаимодействия металлосодержащих веществ, покрытых водорастворимой полимерной пленкой, с водной средой в качестве последней используют водную среду, параметры которой соответствуют параметрам ее сверхкритического состояния для обеспечения возможности процесса послойного горения металлосодержащих веществ с выделением водорода.

В качестве металлосодержащих веществ используют, например, алюминий или гидрид алюминия, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте. При этом, давление сверхкритического состояния водной среды составляет более 22,12 МПа, а температура более 647,3 K.

В предложенном способе сверхкритическое состояние воды используют для одностадийного (прямого) получения водорода при ее реакции с металлосодержащим веществом.

Заявителем не обнаружено технических решений, содержащих операцию покрытия водорастворимой полимерной пленкой металлосодержащих веществ, которая была бы использована при получении водорода.

Это позволяет сделать вывод о соответствии заявленного способа критериям изобретения "новизна" и "изобретательский уровень".

При попадании водной среды на полимерную пленку последняя растворяется и металлосодержащие вещества вступают в реакцию с молекулами воды, которые при сверхкритических параметрах находятся на значительно больших расстояниях, чем в жидкой воде. В этом состоянии почти полностью разрушаются водородные связи и молекулы воды не проявляют взаимосвязанности. В водных средах при сверхкритических параметрах состояния коэффициенты диффузии очень велики, а сопротивление массообмену практически отсутствует, так что обеспечиваются все условия для быстрого протекания реакции.

Сущность способа получения водорода поясняется следующим.

В качестве примера реализации способа приводится процесс получения водорода из ультрадисперсного порошка алюминия со средним размером частиц 0,2 мкм, полученного, например, методом электродуговой плазменной переконденсации в среде инертного газа аргон. Полученный вышеуказанным методом порошок ультрадисперсного алюминия покрывают пленкой водорастворимого полимера, например полиэтиленоксидом в смесителе якорного типа.

Полученную массу (алюминий 94%, водорастворимый полимер 6%) прессуют и в виде заряда массой 500 г помещают в реактор цилиндрической формы объемом 25 л.

В реактор после его герметизации подают 500 г водной среды под давлением 25 МПа при температуре 647,3 K. Полимерная пленка на поверхности заряда растворяется и начинается процесс послойного горения с выделением водорода и тепловой энергии. Состав газообразных продуктов сгорания выглядит следующим образом: 93,43% об. водорода, 6,19% об. оксида углерода, 0,38% об. метана. Теплота сгорания заряда 7285 кДж, что составляет в перерасчете на 1 кг алюминия 15500 кДж. Объем полученного водорода 659,5 л (при нормальных условиях) или 1,4 куб. м в перерасчете на 1 кг алюминия. В качестве металлосодержащего вещества кроме алюминия может быть использован магний или другие энергоемкие вещества.

Если в качестве металлосодержащего вещества использовать порошок гидрида алюминия, то для сжигания 500 г заряда (гидрида алюминия 94%, водорастворимого полимерного покрытия 6%) используют герметичный реактор с объемом 45 л, в который подают 500 г водной среды под давлением 25 МПа при температуре 647,3 K.

Состав газообразных продуктов сгорания в этом случае выглядит следующим образом: 96,1% об. водорода, 3,9% об. оксида углерода. Теплота сгорания заряда 10192 кДж или в перерасчете на 1 кг гидрида алюминия 21685 кДж. Объем полученного водорода 1147 л (при нормальных условиях или 2,6 куб. м в перерасчете на 1 кг гидрида алюминия).

Использование предложенного способа позволит снизить энергозатраты при производстве водорода, повысить управляемость и безопасность процесса, а также осуществлять регенерацию исходного сырья. Изобретение может быть использовано в промышленности для получения тепловой и кинетической энергии.

Источники информации
1. Химическая энциклопедия в 5 т., под редакцией И.П. Кнунянца - М., Сов.энциклопедия, 1988 г., т. 1., с. 401.

2. Путилова И.Н. Курс общей химии. Высш. Школа, 1964 г., с. 208.

3. Путилова И.Н. и др. Курс общей химии. Высш. Школа, 1964 г., с. 209.

Похожие патенты RU2165388C1

название год авторы номер документа
СПОСОБ СЖИГАНИЯ МЕТАЛЛОСОДЕРЖАЩЕГО ТОПЛИВА 2000
RU2158396C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ 2012
  • Стребков Дмитрий Семенович
  • Баранский Виктор Сергеевич
  • Трубников Владимир Захарович
RU2520490C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ) 2012
  • Стребков Дмитрий Семенович
  • Староверов Всеволод Владимирович
RU2509719C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДОВ ИЛИ ОКСИДОВ АЛЮМИНИЯ И ВОДОРОДА 2003
  • Берш А.В.
  • Жуков Н.Н.
  • Иванов Ю.Л.
  • Иконников В.К.
  • Мазалов Ю.А.
  • Рыжкин В.Ю.
  • Трубачев О.А.
RU2223221C1
СПОСОБ ИЗГОТОВЛЕНИЯ СОСТАВА 2000
  • Мазалов Ю.А.
RU2162755C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ГИДРООКИСИ АЛЮМИНИЯ И ВОДОРОДА 2007
  • Могилевский Игорь Николаевич
RU2350563C2
СПОСОБ ГАЗИФИКАЦИИ УГЛЯ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И СИНТЕЗ-ГАЗА (ВАРИАНТЫ) 2007
  • Носачев Леонид Васильевич
  • Василевский Эдуард Борисович
  • Егоров Иван Владимирович
  • Пляшечник Владимир Ильич
  • Полежаев Юрий Васильевич
  • Курячий Александр Петрович
RU2354820C1
СПОСОБ ИСПОЛЬЗОВАНИЯ ВЕЩЕСТВА МАНТИИ ЗЕМЛИ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА 2003
  • Ларин В.Н.
RU2244817C1
СПОСОБ ПЛАЗМОХИМИЧЕСКОГО ПИРОЛИЗА УГЛЕВОДОРОДОВ 1993
  • Губарев А.И.
  • Добрышев В.В.
  • Мурин Г.Ф.
  • Попов В.Т.
  • Словецкий Д.И.
RU2078117C1
СПОСОБ ОБЪЕМНОГО ПОЖАРОТУШЕНИЯ 1996
RU2087170C1

Реферат патента 2001 года СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА

Способ получения водорода для повышения эффективности заключается в том, что перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой. 3 з.п.ф-лы.

Формула изобретения RU 2 165 388 C1

1. Способ получения водорода, заключающийся в подаче в реактор металлосодержащих веществ и водной среды и последующем осуществлении взаимодействия металлосодержащих веществ с водной средой, отличающийся тем, что перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой, а при осуществлении взаимодействия с водной средой в качестве последней используют водную среду, параметры которой соответствуют параметрам ее сверхкритического состояния для обеспечения возможности создания процесса послойного горения металлосодержащих веществ с выделением водорода. 2. Способ по п.1, отличающийся тем, что в качестве металлосодержащих веществ используют порошкообразный алюминий, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте. 3. Способ по п.1, отличающийся тем, что в качестве металлосодержащих веществ используют гидрид алюминия, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте. 4. Способ по пп.1 - 3, отличающийся тем, что давление сверхкритического состояния водной среды составляет более 22,12 МПа, а температура - более 647,3 К.

Документы, цитированные в отчете о поиске Патент 2001 года RU2165388C1

ПУТИЛОВА И.Н
и др
КУРС ОБЩЕЙ ХИМИИ - М.: ВЫСШАЯ ШКОЛА, 1964, с.209
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО МАТЕРИАЛА И ВОДОРОДА 1994
  • Чесноков В.В.
  • Буянов Р.А.
  • Молчанов В.В.
  • Кувшинов Г.Г.
  • Могильных Ю.И.
RU2086502C1
КРОНШТЕЙН ВОДОСТОЧНОГО ЖЕЛОБА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И МОНТАЖА 1996
  • Андерссон Томми
  • Эскильссон Ларс
  • Феллерт Эрьян
  • Ханссон Ян
  • Ларссон Ханс
  • Тувессон Стеллан
RU2152491C2
US 4371500 A, 01.02.1983
ЧЕТЫРЕХТАКТНЫЙ РОТОРНО-ЛОПАСТНОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2011
  • Гридин Валерий Владиславович
RU2467175C2
DE 4226496 A1, 21.01.1993.

RU 2 165 388 C1

Авторы

Мазалов Ю.А.

Даты

2001-04-20Публикация

2000-07-04Подача