СПОСОБ ГАЗИФИКАЦИИ УГЛЕРОДОСОДЕРЖАЩИХ ТВЕРДЫХ ВИДОВ ТОПЛИВА Российский патент 2014 года по МПК C10J3/46 F23C3/00 F23G5/27 

Описание патента на изобретение RU2521638C2

Изобретение относится к способам газификации твердых видов углеродного топлива: бурых и каменных углей, сланцев и торфа. Изобретение может быть использовано в энергетике, химической и металлургической промышленности.

Использование способов прямого сжигания твердых видов топлива для его газификации имеет низкую эффективность в силу неполного сгорания топлива и низкого коэффициента полезного действия топок, дороговизны транспортировки и экологического загрязнения окружающей среды. Твердые виды топлива принципиально не могут быть использованы в наиболее современных технологиях энергетической генерации (газотурбинные установки, парогазовые установки, газопоршневые установки) без предварительного перевода твердого топлива в газообразное или жидкое состояние. Использование твердых видов топлива в традиционной генерации в паровом цикле имеет неудовлетворительную энергетическую эффективность, а также наносящие ощутимый вред окружающей среде выбросы в атмосферу оксидов серы, частиц золы и отвалы, содержащие тяжелые металлы. Одним из приоритетных направлений технического перевооружения ТЭС является внедрение высокоэффективных экологически чистых технологий для производства электрической и тепловой энергии с использованием газификации твердого топлива (Дьяков А.Ф. и др. Новые подходы к технологии использования твердого топлива в электроэнергетике. - "Теплоэнергетика", 1998, N 2).

Химические реакции термохимической переработки твердого топлива в газогенераторах протекают с выделением и поглощениям тепла, МДж/кмоль (Высокотемпературные теплотехнологические процессы и установки./ И.И Перелетов, Л.А.Бровкин, И.Ю.Розенгарт и др.; под ред. А.Д.Ключникова. - М.: Энергоатомиздат, 1989. 336 с.)

C + O 2 = C O 2 + 407 ; ( 1 )

C + 0,5 O 2 = C O + 123 ; ( 2 )

C + H 2 O = C O + H 2 118,7 ; ( 3 )

C + 2 H 2 O = C O 2 + 2 H 2 75,5 ; ( 4 )

C + C O 2 = 2 C O 161,5 ; ( 5 )

C O + 0,5 O 2 = C O 2 + 284 ; ( 6 )

C O 2 + H 2 = C O + H 2 O 43,6 ; ( 7 )

В автотермических газогенераторах тепловую энергию, необходимую для проведения процессов газификации, получают за счет окисления части твердого топлива.

Известен способ газификации твердого топлива в шлаковом расплаве, барботируемом кислородным дутьем (патент RU 2181861, МПК F23C 3/00. Способ ступенчатой газификации и сжигания твердого топлива в аэрошлаковом расплаве. Мадоян А.А.; Ефимов Н.Н., Свердлов В.И, опубл. 27.04.2002).

Способ включает сжигание твердого топлива в ванне с жидким расплавом шлака при подаче в него под давлением газифицирующего агента с образованием и выведением из ванны газа, а также минеральных компонентов из жидкой фазы расплава. При этом ванну заполняют жидким шлаком, загружают твердое топливо, например уголь, и подают газифицирующий агент (кислород или водяной пар). Топливо, попадая в объем жидкого шлака, разогревается, его кусочки растрескиваются и плавятся. В камере начинается процесс интенсивной газификации топлива в объеме расплава под воздействием газифицирующего агента. При использовании в качестве газифицирующего агента кислорода газификация происходит в соответствии с реакцией (2), водяного пара в соответствии с реакцией (3) и (4)). Газифицирующие агенты и выделяющиеся по реакциям (2,3,4) газы барботируют расплавленный шлак. При этом бурлящий шлак играет роль теплоносителя, который обеспечивает идеальные условия тепломассообмена всех компонентов расплава, в том числе топлива с окислителем. При этом топливно-шлаковая смесь разогревается, происходит термическое дробление и плавление всех ее компонентов, кроме углерода, который ведет себя как несмачиваемое вещество. В результате "несмачиваемый легкий углерод" поднимается в верхнюю часть расплава, происходит деминерализация углерода топлива путем отделения (плавления) минеральных компонентов в жидкой фазе расплава с образованием несмачиваемого углерода высокой концентрации.

Полученный синтез-газ направляется в газоотводящий тракт. В верхней части расплава скапливается легкий шлак, являющийся ценным сырьем для получения строительной продукции, а в нижней части концентрируется жидкая металлическая фаза, имеющая промышленное значение.

Технология газификации угля в шлаковом расплаве, барботируемом кислородным дутьем, имеет следующие основные преимущества:

- возможность использования любых низкосортных и непроектных углей независимо от их марки и качества;

- возможность полезного использования минеральной части топлива с восстановлением и выводом из расплава черных и цветных металлов;

- высокая экологическая чистота процессов (выбросы в атмосферу твердых частиц - не более 50 мкг/м3, оксидов азота - не более 100 мг/м3, снижение на 30% выбросов SO2 и на 10% выбросов CO2;

- отсутствие громоздких систем топливоприготовления, пылеподачи и золоочистки, отсутствие золоотвала.

Недостатком является то, что при автотермических технологиях, какой является и способ газификации твердого топлива по патенту №2181861, до 40% топлива затрачивается на поддержание температуры процесса. Причем, при использовании топлива с высоким содержанием минеральной составляющей (каменный уголь и сланец) и низкой теплотворной способностью используемого топлива, температуры шлакового расплава недостаточно для обеспечения высокопроизводительного процесса газификации, а получение газа, энергетическая ценность которого превышала бы 70% энергетической ценности используемого топлива, невозможно. При этом жидкотекучесть шлака в таком процессе не достаточна для выведения минеральной части топлива из ванны.

Кроме того, недостатками технологии на основе автотермической плавки в жидкой ванне являются также:

ограниченность устойчивых технологических режимов автогенного процесса;

сложность пуска и остановки установки.

Сохранить все преимущества газификации в шлаковом расплаве и избавиться от недостатков автотермического процесса плавки в жидкой ванне позволяют основанные на преобразовании электрической энергии в тепловую. Электротехнологические процессы, проводимые в электродных печах, позволяют проводить газификацию любых видов твердого топлива при полном использовании сырья с получением высококалорийного газа, металлического сплава и строительных материалов из шлака. Газификация в электротехнологических установках позволяет получить из различных видов твердого топлива синтез-газ с высоким содержанием водорода и оксида углерода, который может быть использован в качестве топлива в любых установках, а также в качестве сырья в химической промышленности.

Наиболее близким техническим решением к заявляемому изобретению является способ газификации углеродсодержащих твердых видов топлив (SU №878774 A1, C10J 3/18, опубл. 07.11.1981). Этот способ предусматривает нагрев, пиролиз подаваемого в ванну с расплавленным шлаком электродной электропечи твердого углеродного топлива при пропускании через шлаковый расплав газифицирующего агента, в качестве которого используют смесь водяного пара и кислорода при следующем соотношении компонентов на углеродную массу угля, вес.%:

Водяной пар 15-45 Кислород 55-85

и электрического тока.

Для этого в электротехнологическую установку подаются твердое топливо, газифицирующие агенты (кислород и водяной пар), минеральные добавки. В рабочем пространстве установки происходит преобразование электрической энергии в энергию. Протекают процессы нагрева, сушки, пиролиза, полукоксования и газификации коксового остатка кислородом и водяным паром, восстановления оксидов минеральной части сырья углеродом, а также образование шлакового и металлического расплава, происходит процесс газификации твердого топлива.

Недостатком такого способа является то, что при его осуществлении не может в достаточной степени эффективно использоваться электрическая энергия, так как не заданы параметры и величина тока, необходимого для осуществления и поддержания процесса, а сам процесс при этом не может осуществляться стабильно.

Техническим результатом заявляемого изобретения является повышение эффективности использования электрической энергии при осуществлении способа и повышение стабильности технологического процесса.

Этот технический результат достигается тем, что при газификации твердых видов углеродного топлива, включающем нагрев, пиролиз подаваемого в ванну с расплавленным шлаком герметичной электродной электропечи углеродного топлива при пропускании через шлаковый расплав газифицирующих агентов, а также пропускании электрического тока, удаление из рабочего пространства печи синтез-газа, шлака и металлического сплава, в соответствии с изобретением через шлаковый расплав пропускают трехфазный электрический ток, величина которого определяется в соответствии с расходом твердого топлива и с учетом необходимой мощности, определяемой из выражения

где

G - расход твердого топлива в электропечи, кг/ч,

wэл - удельный расход необходимой электроэнергии, определенный физическим и математическим моделированием, равный:

- для газификации каменного угля и использования в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,20-2,356 МДж/кг, водяного пара 7,0-7,23 МДж/кг, кислорода 0,20-0,23 МДж/кг;

- для газификации бурого угля и торфа и использования в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,50-2,83 МДж/кг, водяного пара 5,0-5,08 МДж/кг, кислорода 0,08-0,1 МДж/кг;

3600 - множитель перевода кг/ч в кг/с,

исходя из которой определяют мощность, приходящуюся на один электрод:

где 106 - множитель перевода мощности в ватты, η - электрический КПД,

m - число электродов, равное 3,

после чего определяют величину тока, приходящуюся на один электрод:

где C - технологический параметр, являющийся комплексной характеристикой электротехнологического режима установки электротермической газификации твердого топлива, определенные физическим и математическим моделированием значения параметра С составляют при газификации каменного угля 0,88 В/Вт1/3 при газификации бурого угля и торфа 0,85 В/Вт1/3.

Способ осуществляют следующим образом. Вначале в ванне электротермического газификатора создается слой расплавленного шлака. При поступлении рабочей массы топлива в электротермический газификатор происходит нагрев материалов, испарение влаги и выделение летучих веществ из органической массы твердого топлива. Высокая температура и наличие газифицирующего агента в реакционной зоне способствуют наиболее полной газификации углерода, входящего в состав горючей массы, с образованием смеси оксида углерода и водорода. Входящие в состав золы оксиды железа и кремния восстанавливаются углеродом по реакциям.

F e m O n + n C = m F e + n C O ( 8 )

S i O 2 + 2 C = S i + 2 C O ( 9 )

На Фиг.1 изображен схематичный рисунок электротермической газификации твердого топлива. В ванне установки находятся твердое топливо 2, расплавленный шлак 3, металлический сплав 4. С помощью электродов 1 подводят переменный трехфазный электрический ток, который растекается по расплавленному шлаку, при этом энергия электромагнитного поля преобразуется в тепловую энергию. Для создания симметричной нагрузки на электросеть используется трехфазный переменный ток, в расплаве печи установлено 3 электрода. В электропечи создается электрическая цепь, включающая погруженные в расплав графитовые электроды, слои шлака и металлического сплава на подине электропечи.

Исходя из размеров ванны, определяют расход твердого топлива, то есть количество загружаемого количества топлива в единицу времени. При нагревании его до 100-110°С в зоне нагрева происходит его сушка. В интервале температур 100-250°С начинается термическое разложение с выделением пирогенной воды, диоксида и оксида углерода, при более высокой температуре начинают выделяться углеводороды, смоляные пары и другие органические соединения. Основная масса летучих веществ выделяется из молодых топлив при 270-450°С, а из старых при 350-500°С, выделение смолы прекращается при 500-580°С. При нагреве до 500-700°С происходит полукоксование твердого топлива. При более высокой температуре в реакционной (шлаковой) зоне начинается газификация коксового остатка и плавление минеральной части топлива. Тепловую энергию, необходимую для поддержания эндотермических процессов, получают при растекании электрического тока по материалам реакционной зоны. Для этого через расплавленный шлак с углеродным твердым топливом пропускают с помощью электродов электрический ток, величина которого определяется в соответствии с расходом твердого топлива с учетом необходимой мощности, определяемой из выражения

P a = G w э л 3600 , М В т , где

G - расход твердого топлива в электропечи, кг/ч,

wэл - удельный расход электроэнергии, определенный физическим и математическим моделированием, равный:

- для газификации каменного угля и использования в процессе газификации в качестве газифицирующего агента парокислородной смеси - 2,20…2,356 МДж/кг;

- при газификации бурого угля и торфа и использовании в процессе газификации в качестве газифицирующего агента парокислородной смеси - 2,50…2,83 МДж/кг;

- для газификации каменного угля и использовании в процессе газификации в качестве газифицирующего агента пара - 7,0…7,23 МДж/кг;

- для газификации бурого угля и торфа и использования в процессе газификации в качестве газифицирующего агента пара 5,0…5,08 МДж/кг;

- для газификации каменного угля и использования в процессе газификации в качестве газифицирующего агента кислорода - 0,20…0,23 МДж/кг;

- для газификации бурого угля и торфа и использования в процессе газификации в качестве газифицирующего агента кислорода 0,08…0,1 МДж/кг,

m - число электродов, равное 3;

3600 - множитель перевода кг/ч в кг/с (кг/с*МДж/кг=МДж/с=МВт)

106 - множитель перевода мощности в ватты.

Затем определяют мощность, приходящуюся на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл - электрический КПД,

после чего определяют величину тока, приходящуюся на один электрод

I = p э а 2 3 С

где С - технологический параметр, являющийся комплексной характеристикой электротехнологического режима печной установки (Электротермические процессы химической технологии./ Под ред. В.А.Ершова. - Л.: Химия, 1984, 464 с.). Так для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения параметра составляют при газификации каменного угля С=0,88 В/Вт1/3, при газификации бурого угля и торфа 0,85 В/Вт1/3.

Полная газификация коксового остатка происходит при температуре выше 1200°С. Минеральная часть топлива и минеральные добавки образуют шлаковый расплав. Оксиды железа, кремния и других элементов восстанавливаются углеродом, при этом образуется металлический сплав.

Таким образом, установки электротермической газификации являются высокотемпературными химическими реакторами со сложной структурой рабочей зоны и неравномерным распределением источников тепла и температуры. В верхних уровнях, куда поступает холодная шихта, все компоненты твердые, по мере опускания шихты вниз температура повышается, появляется жидкая фаза. Область максимальных температур находится вблизи рабочих концов электродов, поскольку там выделяется большая часть мощности за счет растекания тока по материалам ванны. В этой области интенсивно протекают эндотермические реакции. Поскольку куски твердого топлива и расплавленный шлак обладают определенной электропроводностью, при растекании электрического тока по ним выделяется тепло, поэтому электротермический электродный газификатор может работать в режиме резистивного нагрева, когда тепло выделяется при растекании тока по материалам ванны.

Ввиду возможности поддержания в зоне газификации достаточно высокой и стабильной температуры электротермическая газификация позволяет перевести всю горючую массу низкосортного твердого топлива в высококалорийный синтез-газ практически свободный от азота, диоксида углерода и водяных паров.

Физическое и математическое моделирование процесса для определения wэл проводилось с учетом полного энергетического баланса процесса электротермической газификации, который включает расход и приход тепловой энергии.

При этом при физическом и математическом моделировании процесса исходили из того, что энергетический баланс должен учитывать расход энергии на:

испарение влаги qвл,

нагрев сухой массы до температуры начала пиролиза qc,

нагрев полукокса до температуры начала газификации qк,

эндотермическая газификация углерода полукокса водяным паром qэнд,

расплавление шлакообразующих материалов и минеральной части топлива qз,

восстановление оксидов минеральной части топлива золы qвос,

тепловые потери qпот;

электрические потери qэл,

а приход энергии в электротермическом газификаторе включает в себя

активную электроэнергию, преобразованную в тепловую wэл

экзотермические химические реакции газификации углерода полукокса кислородом qэкз,

физическое тепло материалов, подаваемых в рабочую зону установки qш.

Энергетический баланс электротехнологической установки при аллотермической газификации

qвл+qс+qк+qэнд+qз+qвос+qпот+qэл=wэл+qэкз+qш

Удельный расход электроэнергии, необходимой для проведения процесса газификации, равен

Wэл=qвл+qс+qк+qэнд+qз+qвос+qпот+qэл-qэкз-qш

При этом удельный расход электроэнергии зависит от технологии газификации и вида топлива (каменный уголь, бурый уголь, торф). При использовании в качестве газифицирующего агента водяного пара кислород не используется. Эмпирически было определено, что удельный расход электроэнергии wэл при паровой газификации каменного угля равен 7,0…7,23 МДж/кг, при паровой газификации бурого угля и торфа 5,0…5,08 МДж/кг. При этом было выявлено, что при этом синтез-газ, полученный в соответствии с заявляемым способом, содержит до 56% водорода, поэтому он может быть использован не только в качестве топлива, но и в качестве сырья для химической промышленности.

При использовании в качестве газифицирующего агента только пара по эндотермической реакции (3) необходим подвод тепловой энергии, расход электроэнергии при этом будет максимальным. При использовании в качестве газифицирующего агента только кислородом по экзотермической реакции (2) выделяющееся тепло практически полностью компенсирует затраты энергии на все процессы при газификации, расход электроэнергии при этом будет относительно небольшим. При использовании в качестве газифицирующего агента парокислородной смеси возможен режим получения термонейтрального газа, при котором тепловые эффекты эндотермической реакции (3) и экзотермической реакции (2) равны по величине. При использовании в качестве газифицирующих агентов смеси кислорода и водяного пара оптимальное содержание кислорода в смеси составляет 55% (Высокотемпературные теплотехнологические процессы и установки. / И.И.Перелетов, Л.А.Бровкин, И.Ю.Розенгарт и др. / под ред. А.Д.Ключникова. - М.: Энергоатомиздат, 1989. 336 с.).

При использовании в качестве газифицирующего агента парокислородной смеси и получении в процессе газификации термонейтрального газа электроэнергия расходуется только на испарение влаги, нагрев материалов и плавление золы, расход электроэнергии будет существенно меньше, чем при газификации только паром.

Эмпирически определено, что при этом для каменного угля удельный расход электроэнергии равен 2,356 МДж/кг, при использовании в качестве газифицирующего агента парокислородной смеси; для газификации бурого угля и торфа удельный расход электроэнергии равен 2,83 МДж/кг, а синтез-газ, полученный в соответствии с заявляемым способом, содержит до 45% водорода.

Энергетический потенциал генераторного газа Qg, который определяется как произведение низшей теплоты сгорания газа на удельный выход газа

Q g = Q н р v г ,

где Q н р -рабочая низшая теплота сгорания генераторного газа, vг - удельный выход газа.

Энергетический потенциал полученного из 1 кг каменного угля синтез-газа паровой газификации составит 29,65 МДж, из 1 кг бурого угля 17,36 МДж.

Энергетический потенциал полученного из 1 кг каменного угля синтез-газа составит 24,345 МДж, из 1 кг бурого угля 14,63 МДж.

При использовании в качестве газифицирующего агента кислорода при газификации каменного угля эмпирически было определено, что удельный расход электроэнергии равен 0,20…0,23 МДж/кг, при кислородной газификации бурого угля и торфа удельный расход электроэнергии равен 0,08…0,1 МДж/кг. Было определено, что при этом полученный синтез-газ содержит до 71% оксида углерода.

Энергетический потенциал полученного из 1 кг каменного угля синтез-газа составит 18,88 МДж, из 1 кг бурого угля 11,8 МДж.

При использовании в качестве газифицирующего агента водяного пара при газификации бурого угля и торфа, газификация происходит по эндотермической реакции (3) только за счет электроэнергии, энергетические затраты на газификацию 1 кг бурого угля и торфа составляют 5,598 МДж.

В таблице приведены показатели газификации каменного угля в соответствии с известными способами без пропускания электрического тока через электрошлаковый расплав и в соответствии с заявляемым способом.

Таблица Способ газификации А.с. 1333686 Автотермическая газификация Патент 2422538, Автотермическая газификация заявляемый, парокислородная аллотермическая газификация заявляемый, кислородная аллотермическая газификация заявляемый, паровая аллотермическая газификация Расход Каменный уголь, т/ч 19,77 24,332 14,8 19,976 2,368 Кислород, тыс, м3 16,475 14,434 5,25 14,443 -

Пар, т/ч 0,44 - 6,12 - 10,067 Мощность, МВт - - 9,686 1,276 24,84 Величина пропускаемого тока, кА - - 23,49 6,08 47,0 Выход Синтез-газ, тыс.м3 35,15 37,116 32,28 32,28 32,38 Содержание в синтез-газе оксида углерода и водорода, % объемные 90 79 98 98 98 Низшая теплота сгорания синтез-газа, МДж/м3 10,242 9,7 11,152 11,152 11,152 Энергетический потенциал полученного в течение часа синтез-газа, ГДж 360 360 360 360 360

Из таблицы следует, что при электротермической газификации твердое топливо и кислород используется более эффективно, синтез-газ имеет более высокое содержание оксида углерода и водорода и более высокую теплоту сгорания.

Пример 1. Осуществляется газификации каменного угля при подаче в ванну со шлаковым расплавом водяного пара и кислорода.

Использована ванна оксидного расплава следующих размеров: диаметр 4,5 м, глубина 1,25 м. Плотность расплава в ванне составляет 2,65 г/см3. Объем ванны расплава 19 м3, масса расплава 52 т. Процесс проводился при температуре ванны 1450°С. В ванну через загрузочные устройства подается каменный уголь в виде кусков размером 20…30 мм в количестве 14800 кг/ч. При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подают водяной пар в количестве 6120 кг/ч и кислород в количестве 5250 м3/ч.

Эмпирически установлена с помощью физико-математических методов величина удельного расхода электроэнергии для каменного угля, равного wэл=2,356 МДж/кг.

Для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения технологического параметра С=0,88 В/Вт1/3.

Одновременно с подачей угля пропускают электрический трехфазный ток через расплав. Величину пропускаемого тока выбирают следующим образом. Исходя из расхода твердого топлива G=14800 кг/ч, определили активную мощность установки

P a = G w э л 3600 , М В т

P a = 14800 2,356 3600 = 9,686 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД. Для трехэлектродных печей мощностью более 9 МВт ηэл=0,92 (Короткие сети и электрические параметры дуговых электропечей. Справ. изд. / Под. ред Я.Б.Данциса и Г.М.Жилова. М.: Металлургия. 1987. 320 с.)

P э a = 10 6 9,686 * 0,92 3 = 2970000 В т

Ток электрода

I = p э а 2 3 С

где С=0,88 В/Вт1/3 - технологический параметр (Электротермические процессы химической технологии. / Под ред. В.А.Ершова. - Л.: Химия, 1984, 464 с.).

Для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения технологического параметра С=0,88 В/Вт1/3

I = 2970000 2 3 0,88 = 23490 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность 8,91 МВт. Ток электрода 23,49 кА.

Электрическая энергия преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3/час, который имеет следующий состав (% об.): СО - 53; СО2 - 0,7; Н2 - 45; Н2О - 0,1;. Температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 2200 кг/ч с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 330 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

При газификации по технологии прототипа при расходе каменного угля 14800 кг/ч при расходе кислорода 12165 нм3/ч будет получено синтез-газа 27000 нм3/ч, с энергетическим потенциалом 303 ГДж, тепловая мощность при сжигании синтез-газа 84 МВт.

Пример 2. Основные параметры при паровой газификации каменного угля.

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Плотность расплава в ванне составляет 2,65 г/см3. Объем ванны расплава 19 м3, масса расплава 52 т. Заданная температура ванны 1450°С. В ванну сверху через загрузочные устройства подается каменный уголь в виде кусков размером 20…30 мм в количестве 12370 кг/ч. При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается водяной пар в количестве 10100 кг/час.

В рабочее пространство ванны вводят электрическую энергию путем пропускания электрического тока через расплав. Электрическая энергия преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=7,23 МДж/кг и расходу твердого топлива G=12370 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 12370 * 7,23 3600 = 24,84 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 10 6 24,84 * 0,92 3 = 7610000 В т

Ток электрода

I = p э а 2 3 С

где С=0,88 В/Вт1/3 - технологический параметр.

Для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения технологического параметра С=0,88 В/Вт1/3

I = 7610000 2 3 0,88 = 44000 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность ванны 24,84 МВт. Ток электрода 44 кА.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы

Образуется синтез-газ в количестве 31200 нм3/час, который имеет следующий состав (% об.): СО - 42; СО 2 - 0,7; Н2 - 56; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 1840 кг/ч с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 275 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

При газификации по технологии прототипа при расходе каменного угля 14800 кг/ч при расходе кислорода 12165 нм3/ч будет получено синтез-газа 27000 нм3/ч, с энергетическим потенциалом 303 ГДж, тепловая мощность при сжигании синтез-газа 84 МВт.

Пример 3. Основные параметры при кислородной газификации каменного угля.

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Плотность расплава в ванне составляет 2,65 г/см3. Объем ванны расплава 19 м3, масса расплава 52 т. Заданная температура ванны 1450°С. В ванну сверху через загрузочные устройства подается каменный уголь в виде кусков размером 20…30 мм в количестве 19980 кг/ч. При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается кислород в количестве 14443 м3/ч.

В рабочее пространство ванны вводят электрическую энергию путем пропускания электрического тока через расплав. Электрическая энергия преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По эмпирически определенному из энергетического баланса удельному расходу электроэнергии wэл=0,23 МДж/кг и расходу твердого топлива G=19980 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 19980 * 0,23 3600 = 1,276 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 10 6 1,276 * 0,92 3 = 391000 В т

Ток электрода

I = p э а 2 3 С

Где С=0,88 В/Вт1/3 - технологический параметр

I = 7610000 2 3 0,88 = 44000 А

Подвод тока осуществляется через 3 графитированных электрода диаметром 400 мм. Активная электрическая мощность 1,276 МВт. Ток электрода 6,08 кА.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3 /ч, который имеет следующий состав (% об.): СО - 70; СО2 - 0,7; Н2 - 28; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 2970 кг/час с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 400 кг/час с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

При газификации по технологии прототипа при расходе каменного угля 14800 кг/ч при расходе кислорода 12165 нм3 /ч будет получено синтез-газа 27000 нм3/ч, с энергетическим потенциалом 303 ГДж, тепловая мощность при сжигании синтез-газа 84 МВт.

Пример 4

Основные параметры при парокислородной газификации бурого угля

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Объем 19,875 м. Плотность ванны составляет 2,65 г/см3. Масса расплава 52,7 т. Температура ванны 1450°С. В ванну сверху через загрузочные устройства подается бурый уголь в виде кусков размером 20..30 мм в количестве 24610 кг/ч. Рабочая масса бурого угля (%): влага Wr=39; зола Ar=7,3; сера Sop+Sk=0,4; углерод Cr=37,4; водород Hr=2,6; азот Nr=0,6; кислород Or=12,7. Низшая теплота сгорания каменного угля Q n p = 13,02 М Д ж / к г . Выход летучих (%) Vdaf=48.

При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается водяной пар в количестве 5266 кг/ч и кислород в количестве 4528 м3/ч.

В рабочее пространство ванны вводится электрическая энергия, которая преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400.. 1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=2,83 МДж/кг и расходу твердого топлива G=24610 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 24610 * 2,38 3600 = 19,34 М В т

Мощность, приходящая на один электрод, МВт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 10 6 19,34 * 0,92 3 = 5930000 В т

Ток электрода

I = p э а 2 3 С

I = 5930000 2 3 0,85 = 38560 А

Подвод тока осуществляется через 3 графитированных электрода диаметром 400 мм. Активная электрическая мощность 19,34 МВт. Ток электрода 38,56 кА.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3/ч, который имеет следующий состав (% об.): СО - 54; СО2 - 0,7; Н2 - 44; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 1796 кг/ч с температурой 1550°С, который отводится непрерывно. Образуется металлический сплав в количестве 270 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31130 нм3/час, который имеет следующий состав (% об.): СО - 55; СО2 - 0,7; Н2 - 44,23; Н2О - 0,1; температура газа - 400°С, калорийность - 11570 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Пример 5

Основные параметры при паровой газификации бурого угля

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Объем 19,875 м3. Плотность ванны составляет 2,65 г/см3. Масса расплава 52,7 т. Температура ванны 1450°С. В ванну сверху через загрузочные устройства подается бурый уголь в виде кусков размером 20..30 мм в количестве 20740 кг/ч. Рабочая масса бурого угля (%): влага Wr=39; зола Ar=7,3; сера Sop+Sk=0,4; углерод Cr=37,4; водород Hr=2,6; азот Nr=0,6; кислород Or=12,7. Низшая теплота сгорания каменного угля Q n p = 13,02 М Д ж / к г . Выход летучих (%) Vdaf=48.

При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается водяной пар в количестве 8730 кг/ч.

В рабочее пространство ванны вводится электрическая энергия, которая преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=5,08 МДж/кг и расходу твердого топлива G=20740 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 20740 * 5,08 3600 = 41,966 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 41,966 0,92 10 6 3 = 12870000 В т

Ток электрода

I = p э а 2 3 С

где С=0,85 В/Вт1/3 - технологический параметр

I = 12870000 2 3 0,85 = 64610 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность 41,966 МВт. Ток электрода 64,61 кА. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3/ч, который имеет следующий состав (% об.): СО - 53; СО2 - 0,7; Н2 - 45; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 1510 кг/ч с температурой 1550°С, который отводится непрерывно. Образуется металлический сплав в количестве 230 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Пример 6

Основные параметры при кислородной газификации бурого угля

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Объем 19,875 м3. Плотность ванны составляет 2,65 г/см3. Масса расплава 52,7 т. Температура ванны 1450°С. В ванну сверху через загрузочные устройства подается бурый уголь в виде кусков размером 20…30 мм в количестве 30500 кг/ч. Рабочая масса бурого угля (%): влага W=39; зола Ar=7,3; сера Sop+Sk=0,4; углерод Cr=37,4; водород Hr=2,6; азот Nr=0,6; кислород Or=12,7. Низшая теплота сгорания каменного угля Q n p = 13,02 М Д ж / к г . Выход летучих (%) Vdaf=48.

При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается кислород в количестве 7990 м3/ч.

В рабочее пространство ванны вводится электрическая энергия, которая преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=0,1 МДж/кг и расходу твердого топлива G=30500 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 30500 * 0,1 3600 = 0,847 М В т

Мощность, приходящая на один электрод, Вт

P э a = Р а η э л 10 6 m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 0,847 0,92 10 6 3 = 259800 В т

Ток электрода

I = p э а 2 3 С

где С=0,85 В/Вт1/3 - технологический параметр.

Для установок электротермической газификации бурого угля определенные физическим и математическим моделированием значения технологического параметра С=0,85 В/Вт1/3

I = 12870000 2 3 0,85 = 64610 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность 0,847 МВт. Ток электрода 4,79 кА. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы. Образуется синтез-газ в количестве 31200 нм3/ч, который имеет следующий состав (% об.): СО - 69; СО2 - 0,7; Н2 - 29; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 2225 кг/ч с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 335 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Технология электрохимической газификации несмотря на использование сравнительно дорогой электроэнергии позволяет в одном процессе совместить металлургическую и энергетическую технологии с получением синтез-газа, металлического сплава и шлака, снизить суммарные энергетические затраты по сравнению с раздельными технологиями металлургического восстановления оксидов и газификации, кроме того, можно использовать установки электротермической газификации как способ регулирования максимумов электрической нагрузки, загружая электротермические газификаторы максимально в ночное время и запасая генераторный газ в газгольдерах.

Похожие патенты RU2521638C2

название год авторы номер документа
СПОСОБ ГАЗИФИКАЦИИ УГЛЕЙ И ЭЛЕКТРОДУГОВОЙ ПЛАЗМЕННЫЙ РЕАКТОР ДЛЯ ГАЗИФИКАЦИИ УГЛЕЙ 1994
  • Карпенко Е.И.
  • Ибраев Ш.Ш.
  • Буянтуев С.Л.
  • Цыдыпов Д.Б.
RU2087525C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЛАЗМЕННОЙ ГАЗИФИКАЦИИ ТВЁРДОГО УГЛЕРОДСОДЕРЖАЩЕГО МАТЕРИАЛА И ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА 2015
  • Аньшаков Анатолий Степанович
  • Фалеев Валентин Александрович
RU2616079C1
СПОСОБ МЕТАЛЛУРГИЧЕСКОЙ ГАЗИФИКАЦИИ ТВЕРДОГО ТОПЛИВА 2013
  • Федоров Александр Николаевич
  • Комков Алексей Александрович
  • Быстров Сергей Валентинович
  • Хабиев Роман Петрович
  • Лукавый Сергей Леонидович
  • Котыхов Михаил Игоревич
  • Аликов Александр Урузмагович
  • Дитятовский Леонид Исаакович
  • Усачев Александр Борисович
  • Баласанов Андрей Владимирович
  • Вереин Владимир Геннадиевич
  • Доберсек Альбин
  • Кирнарский Анатолий Семенович
RU2547084C2
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ 2011
  • Емельянов Сергей Геннадьевич
  • Звягинцев Геннадий Леонидович
  • Кобелев Николай Сергеевич
  • Назарова Дарья Геннадиевна
  • Назаров Александр Николаевич
  • Ларичкина Дарья Олеговна
RU2478169C1
Способ газификации топлива в газогенераторе проточного типа 1991
  • Щипко Максим Леонидович
  • Янголов Олег Васильевич
  • Ружников Сергей Григорьевич
  • Линейцев Анатолий Прокопьевич
SU1817784A3
СПОСОБ ПЛАЗМОТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ОРГАНИЧЕСКОГО ТОПЛИВА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Неклеса Анатолий Тимофеевич
RU2294354C2
Способ газификации пылевидного топлива 1990
  • Щипко Максим Леонидович
  • Янголов Олег Васильевич
  • Винк Виктор Арнольдович
  • Линейцев Анатолий Прокопьевич
  • Ружников Сергей Григорьевич
  • Шевцов Евгений Викторович
  • Кузнецов Борис Николаевич
SU1756331A1
СПОСОБ ПЕРЕРАБОТКИ, ОБЕЗВРЕЖИВАНИЯ И УНИЧТОЖЕНИЯ МЕДИЦИНСКИХ ОТХОДОВ 2022
  • Аньшаков Анатолий Степанович
  • Домаров Павел Вадимович
RU2799297C1
СПОСОБ И УСТАНОВКА ДЛЯ ГАЗИФИКАЦИИ ТВЕРДОГО ТОПЛИВА 2007
  • Щипко Максим Леонидович
  • Рудковский Алексей Викторович
  • Кузнецов Борис Николаевич
RU2333929C1
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ 1996
  • Ковалев В.Г.
  • Лоскутов В.И.
  • Никонов Н.А.
  • Петелин Ю.Ю.
  • Сидоров В.С.
  • Тарасов В.А.
  • Илларионов И.Е.
  • Сахалкин А.Г.
RU2117217C1

Иллюстрации к изобретению RU 2 521 638 C2

Реферат патента 2014 года СПОСОБ ГАЗИФИКАЦИИ УГЛЕРОДОСОДЕРЖАЩИХ ТВЕРДЫХ ВИДОВ ТОПЛИВА

Изобретение относится к способам газификации твердых видов углеродсодержащего топлива: бурых и каменных углей, сланцев и торфа. При газификации углеродсодержащих твердых видов топлива, включающей нагрев, пиролиз подаваемого в ванну с расплавленным шлаком герметичной электродной электропечи твердого углеродного топлива при пропускании через расплавленный шлак с твердым углеродным топливом газифицирующих агентов, а также пропускании электрического тока с помощью сформированной электрической цепи, включающей электроды, введенный в ванну электропечи и подину электропечи, удаление из рабочего пространства печи синтез-газа, шлака и металлического сплава, через расплавленный шлак с твердым углеродным топливом пропускают трехфазный электрический ток, величина которого определяется в соответствии с расходом твердого топлива и с учетом необходимой мощности, определяемой из выражения: P a = G w э л 3600 , М В т , где G - расход твердого топлива в электропечи, кг/ч, wэл - удельный расход электроэнергии. Техническим результатом заявляемого изобретения является повышение эффективности использования электрической энергии при осуществлении способа и повышение стабильности технологического процесса. 1 ил., 1 табл.

Формула изобретения RU 2 521 638 C2

Способ газификации твердых видов углеродного топлива, включающий нагрев, пиролиз подаваемого в ванну с расплавленным шлаком герметичной электродной электропечи углеродного топлива при пропускании через шлаковый расплав газифицирующих агентов, а также пропускании электрического тока, удаление из рабочего пространства печи синтез-газа, шлака и металлического сплава, отличающийся тем, что через шлаковый расплав пропускают трехфазный электрический ток, величина которого определяется в соответствии с расходом твердого топлива и с учетом необходимой мощности, определяемой из выражения:

где - G - расход твердого топлива в электропечи, кг/ч,
wэл - удельный расход необходимой электроэнергии, определенный физическим и математическим моделированием, равный:
- для газификации каменного угля и использовании в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,20-2,356 МДж/кг, водяного пара 7,0-7,23 МДж/кг, кислорода 0,20-0,23 МДж/кг;
- для газификации бурого угля и торфа и использовании в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,50-2,83 МДж/кг, водяного пара 5,0-5,08 МДж/кг, кислорода 0,08-0,1 МДж/кг;
3600 - множитель перевода кг/ч в кг/с, исходя из которой определяют мощность, приходящуюся на один электрод:

где 106 - множитель перевода мощности в ватты, η - электрический КПД,
m - число электродов, равное 3,
после чего определяют величину тока, приходящуюся на один электрод:

где С - технологический параметр, являющийся комплексной характеристикой электротехнологического режима установки электротермической газификации твердого топлива, определенные физическим и математическим моделированием значения параметра С составляют при газификации каменного угля 0,88 В/Вт1/3, при газификации бурого угля и торфа 0,85 В/Вт1/3.

Документы, цитированные в отчете о поиске Патент 2014 года RU2521638C2

Способ газификации твердого углеродсодержащего топлива 1979
  • Худяков Георгий Никитич
  • Кружилин Георгий Никитич
  • Легасов Валерий Алексеевич
  • Ананьев Евгений Петрович
  • Алексеев Аркадий Мефодьевич
  • Пендраковский Владимир Трофимович
  • Лыткин Альберт Яковлевич
SU878774A1
RU 2056008 С1, 10.03.1996
ПРИБОР ДЛЯ ОТМЕРИВАНИЯ СЫПУЧИХ И ПОРОШКООБРАЗНЫХ ВЕЩЕСТВ 1928
  • Крупенников В.В.
SU9601A1
US 2007289509 A1, 20.12.2007
WO 03018721 A1, 06.03.2003
JP 2002195519 A, 10.07.2002

RU 2 521 638 C2

Авторы

Ковалев Владимир Геннадьевич

Афанасьев Владимир Васильевич

Тарасов Владимир Александрович

Даты

2014-07-10Публикация

2012-09-17Подача