СПОСОБ ОПРЕДЕЛЕНИЯ ДИСПЕРСНОСТИ ВОДОГАЗОВОЙ СМЕСИ Российский патент 2014 года по МПК E21B43/22 G01N13/02 G01N15/02 

Описание патента на изобретение RU2522486C2

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси (МДВГС) перед закачкой в пласт.

Установлено, что добычу остаточной нефти из заводненных пластов обеспечивает смешивающее вытеснение углеводородными газами, при котором достигается сверхнизкое межфазное натяжение на контакте фаз. Такие условия возникают при вытеснении нефти агентами, которые практически полностью устраняют отрицательное влияние капиллярных сил на вытеснение нефти. Технологический процесс, использующий попутный нефтяной газ (ПНГ) для закачки в нефтенасыщенный пласт, решает целый ряд промышленно и экологически значимых проблем. Одна из перспективных областей применения ПНГ - обратная закачка в пласт под высоким давлением для повышения нефтеотдачи и интенсификации добычи нефти. Обратная закачка извлеченного газа используется в качестве вторичного способа добычи нефти и, несмотря на дополнительные расходы, связанные с необходимостью его очистки и компремирования, в то же время продлевает срок эксплуатации нефтяного месторождения, обеспечивая дополнительные объемы добычи нефти. Таким образом, газ можно многократно использовать в течение всего периода активной эксплуатации нефтяного месторождения. Известен способ разработки обводненной нефтяной залежи на поздней стадии, включающий закачку рабочего агента через нагнетательные скважины в нестационарном режиме, при этом периодически через нагнетательные скважины закачивают водогазовую смесь, состоящую из пластовой воды и диспергированного в ней очищенного нефтяного газа с размерами пузырьков до 5 мкм (пат РФ №2236573). Известен также способ разработки нефтяной залежи на поздней стадии, включающий установление характера распределения текущих нефтенасыщенных толщин или текущей нефтенасыщенности пласта-коллектора, периодическую эксплуатацию высокообводненных скважин, находящихся в зонах пониженных значений нефтенасыщенных толщин или нефтенасыщенности, эксплуатацию скважин, находящихся в зонах повышенных значений нефтенасыщенных толщин или коэффициента нефтенасыщения, на форсированных режимах отбора жидкости, закачку через нагнетательные скважины водогазовой дисперсной смеси (ВГДС), состоящей из пластовой воды и диспергированного в ней очищенного нефтяного газа, отличающийся тем, что закачку ВГДС осуществляют, периодически изменяя степень ее дисперсности: сначала - закачку ВГДС с размерами газовых пузырьков, соизмеримыми с размером поровых каналов, промытых водой, до тех пор, пока обводненность добываемой продукции снизится на 2-6,1%, затем - закачку ВГДС с размерами газовых пузырьков, соизмеримыми с размерами капиллярных и субкапиллярных нефтесодержащих поровых каналов, до тех пор, пока обводненность добываемой продукции после указанного снижения повысится на 0,5-2,5%, сохраняя указанное периодическое изменение степени дисперсности ВГДС в течение всего периода ее закачки (пат. РФ №2318997).

Смешение нефтяного газа с пластовой водой обеспечивается инжекцией пластовой воды нефтяным газом: газ, поступающий под большим давлением, подсасывает воду, распыляясь в ней мелкими пузырьками. Для большей степени диспергирования газа используется различные диспергаторы. Однако настройка каждого диспергатора для получения МДВГС требует калибровки, т.е. исследования зависимости распределения размеров пузырьков от настройки режимов работы эжектора и диспергатора в промысловых условиях.

Вместе с тем, в настоящее время отсутствуют надежные способы измерения размеров газовых пузырьков в жидкости при высоком газосодержании и наличии в анализируемой смеси посторонних включений (пыли, окалины, капель, несмешивающихся с водой жидкости и т.п.)

Известные методы определения дисперсности водогазовых смесей (акустические и оптические) пригодны для проведения измерений в тщательно очищенных от примесей жидкостях в достаточно узких диапазонах газонасыщенности (Акустический журнал, 1961, т.7, №4, стр.421-427; Всесоюзный симпоз. по физике акустико-гидродинамических явлений и оптоакустике. Тезисы докладов. М.: Наука, 1979, стр.42-43; Михалев А.С., Ринкевичюс Б.С., Скорнякова Н.М. Лазерный интерференционный метод определения параметров пузырьков газа, Метрология, 2009, №9, стр.3-14; Патент РФ №2037806).

Общим недостатком перечисленных методов измерения и контроля дисперсности водогазовых смесей является невозможность эффективно использовать их в условиях нефтепромысла.

В связи с изложенным основной технической задачей, на решение которой направлено заявляемое изобретение, является создание способа определения размеров газовых пузырьков в жидкости при значительной газонасыщенности, малочувствительного к наличию в системе посторонней дисперсной фазы (загрязнений), и простого устройства для его реализации в условиях нефтепромысла.

Наиболее близким к предлагаемому является способ определения степени дисперсности водогазовой смеси (пены) под давлением, включающий получение водогазовой смеси под повышенным давлением и перевод ее в измерительную емкость при том же давлении. (Васильев В.К., Быкова Т.Н., Маркин А.А. Устойчивость пен под давлением. Нефтепромысловое дело, №5, 1976, с.27-29).

Недостатком этого способа является необходимость проведения измерений с помощью микроскопической съемки, что требует наличия микроскопа с регистрирующей аппаратурой, что свою очередь исключает возможность проведения измерений в случае непрозрачности дисперсионной (непрерывной) фазы или при наличии в ней посторонних примесей, а также невозможность проведения оперативных измерений в условиях нефтепромысла

Целью предлагаемого изобретения является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для условий с непрозрачной (или загрязненной) дисперсионной среды.

Предлагаемый способ осуществляется следующим образом. Способ основан на экспериментальном факте, заключающемся в том, что при расслоении полидисперсной водогазовой смеси в первую очередь разрушаются наиболее крупные пузырьки. Так как избыточное давление газа в пузырьке ΔР, находящемся в равновесии с жидкостью, связано с размером пузырька r и коэффициентом поверхностного натяжения σ формулой Лапласа:

Δ P = 2 σ r                                                                       (1)

при разрушении пузырьков с размером ri давление в герметичном сосуде с водогазовой смесью увеличится на величину:

Δ P i = 2 σ r i                                                                  (1a)

по мере расслоения водогазовой смеси давление в газовом слое, образующемся над слоем стекающей на дно герметичного сосуда и слоем водогазовой смеси, будет увеличиваться. Регистрируя изменение давления в сосуде и объем газа, можно рассчитать начальное распределение газовых пузырьков по размеру. Конечное значение приращения давления ΔРК (после полного расслоения смеси на газ и жидкость) характеризует средневесовой радиус пузырьков в водогазовой смеси в момент отбора пробы и заключения ее в герметичный сосуд, а отношение объема (уровня) жидкости в сосуде к объему, занятому выделившимся газом, водогазовое отношение.

Из линии нагнетания мелкодисперсной водогазовой смеси (МДВГС) при давлении нагнетания Р0 отбирается проба в герметично закрываемую емкость с объемом V0 (по определению МДВГС готовится монодисперсной или с достаточно узким распределением размеров пузырьков). В крышке и дне емкости вмонтированы датчики давления, температуры. Устройство снабжено ультразвуковым измерителем объема, выполненным в виде многолучевого эхолота или УЗИ-сканера, датчик которого размещен в крышке емкости.

В процессе исследования регистрируется изменение давления под крышкой сосуда ΔPi и соответствующее ему приращение объема свободного газа ΔVi. Количество газа, содержащегося в объеме ΔV1, рассчитывается по уравнению Менделеева-Клайперона

( P 0 + Δ P i ) Δ V i = n I R T ;                                                           (2)

ni - количество молей газа, R - универсальная газовая постоянная, Т - абсолютная температура.

Общее количество газа mг, содержащегося в отобранной пробе, также рассчитывается по уравнению Менделеева-Клайперона ( P 0 + Δ P K ) Δ V i = n 0 R T ;                                                                 (3)

имея в виду, что mг=Мn0, где М - среднее значение молекулярной массы закачиваемого газа, а n0 - количество молей газа в пробе, рассчитанное по формуле (3).

В процессе измерений получается зависимость ΔР от объема свободного газа в сосуде. Эта зависимость преобразуется (с использованием приведенных выше соотношений) в зависимость от относительной доли текущего значения массы свободного газа m/mг

Δ P = f ( m i г / m г )                                                               (4)

Дифференцирование последней зависимости позволяет, с использование соотношения (1а), получить распределение размеров газовых пузырьков в МДВГС.

Возможность осуществления заявляемого способа и устройства доказывается использованием в отечественной и зарубежной практике оборудования для нагнетания газа и газожидкостных смесей с использованием насосов объемного вытеснения, наличием серийно выпускаемых высокоточных датчиков давления и температуры, а также прецизионных ультразвуковых сканеров.

Пример реализации способа

Емкость - V0=0,100 м3, газ СН4 (М=16), Р0=50000 Па, σ=0,073н/м

Р (Па) 50000 50100 50500 51000 51500 52000 52100 ΔР (Па) 0 100 500 1000 1500 2000 2100 ri (мм) ≥1,46 ≥0,29 ≥0,146 ≥0,097 ≥0,073 ≥0,069 ΔVi 3) 0 0,001 0,003 0,03 0,07 0,08 0,081 Т 293 293 293 293 293 293 293 ni (моль) 0 0,02 0,062 0,628 1,48 1,71 1,73 m (грамм) 0 0,32 0,995 10,04 23,68 27,32 27,68 Mг 27,68 m/mг 0 0,012 0,0359 0,363 0,856 0,986 Фракция пузырей с радиусом ri, мм ≥1,46 0,29-1,46 0,146-0,29 0,097-0,146 0,073-0,097 0,069-0,073 Доля, % 1,2 2,4 32,7 49,3 13,0 1,4

Похожие патенты RU2522486C2

название год авторы номер документа
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ НА ПОЗДНЕЙ СТАДИИ ПУТЕМ ВОДОГАЗО-ГИДРОДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ ПРИ ПЕРИОДИЧЕСКОМ ИЗМЕНЕНИИ ДИСПЕРСНОСТИ ГАЗОВОЙ ФАЗЫ 2006
  • Лейбин Эммануил Львович
  • Шарифуллин Фарид Абдулович
  • Заничковский Феликс Михайлович
  • Максутов Равхат Ахметович
RU2318997C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Савицкий Н.В.
  • Борткевич С.В.
RU2266396C2
СПОСОБ ПОДГОТОВКИ И ЗАКАЧКИ МЕЛКОДИСПЕРСНОЙ ВОДОГАЗОВОЙ СМЕСИ В НАГНЕТАТЕЛЬНУЮ СКВАЖИНУ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭТОЙ СМЕСИ 2015
  • Ставский Михаил Ефимович
  • Красневский Юрий Сергеевич
  • Здольник Сергей Евгеньевич
  • Латыпов Альберт Рифович
  • Сергеев Евгений Иванович
  • Магомедшерифов Нух Имадинович
  • Нестеренко Владимир Михайлович
  • Федоров Алексей Иванович
  • Савичев Владимир Иванович
  • Церковский Юрий Аркадьевич
  • Абуталипов Урал Маратович
  • Старков Станислав Валерьевич
  • Иванов Артём Викторович
RU2659444C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РЕЖИМА ТЕЧЕНИЯ ВОДОГАЗОВОЙ СМЕСИ 2016
  • Ставский Михаил Ефимович
  • Здольник Сергей Евгеньевич
  • Магомедшерифов Нух Имадинович
  • Латыпов Альберт Рифович
  • Сергеев Евгений Иванович
  • Абуталипов Урал Маратович
  • Иванов Артём Викторович
  • Китабов Андрей Николаевич
RU2619797C1
СПОСОБ РАЗРАБОТКИ НЕФТЕГАЗОВОГО МЕСТОРОЖДЕНИЯ С ПРИМЕНЕНИЕМ ВОДОГАЗОВОГО ВОЗДЕЙСТВИЯ 2011
  • Крянев Дмитрий Юрьевич
  • Петраков Андрей Михайлович
  • Симкин Эрнст Михайлович
  • Ненартович Татьяна Львовна
RU2477784C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 2007
  • Хисамов Раис Салихович
  • Абдулмазитов Рафиль Гиниятуллович
  • Ибатуллин Равиль Рустамович
  • Ибрагимов Наиль Габдулбариевич
RU2326234C1
СПОСОБ РАЗРАБОТКИ ОБВОДНЕННОЙ НЕФТЯНОЙ ЗАЛЕЖИ НА ПОЗДНЕЙ СТАДИИ ПУТЕМ ГАЗО-ГИДРОДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ 2003
  • Лейбин Э.Л.
  • Шарифуллин Ф.А.
  • Заничковский Ф.М.
  • Максутов Р.А.
RU2236573C1
Способ вытеснения нефти из пласта 1991
  • Крючков Владимир Иванович
  • Пешков Викторин Евгеньевич
  • Щемелинин Юрий Алексеевич
SU1810505A1
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖИ ВЯЗКОЙ НЕФТИ 1993
  • Степанова Г.С.
  • Шовкринский Г.Ю.
  • Сафронов С.В.
  • Ли А.А.
RU2043488C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ 2008
  • Шевченко Александр Константинович
RU2365741C1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ ДИСПЕРСНОСТИ ВОДОГАЗОВОЙ СМЕСИ

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт. Техническим результатом является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для непрозрачной дисперсионной среды. Способ включает получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость ΔР от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (ΔР) от относительной доли текущего значения массы свободного газа m/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле:

r i = 2 σ Δ P i

где σ - межфазное натяжение, и вычисляется функция распределения радиуса пузырьков. 3 з.п. ф-лы, 1 пр., 1 табл.

Формула изобретения RU 2 522 486 C2

1. Способ определения дисперсности водогазовой смеси под давлением, включающий получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении, отличающийся тем, что перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость ΔР от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (ΔР) от относительной доли текущего значения массы свободного газа m/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле:
r i = 2 σ Δ P i
где σ - межфазное натяжение,
и вычисляется функция распределения радиуса пузырьков.

2. Способ по п.1, отличающийся тем, что количество газа, содержащегося в объеме, рассчитывается по уравнению Менделеева-Клайперона:
( P 0 + Δ P i ) Δ V i = n i R T   ;                                        (1)
где ni - количество молей газа,
R - универсальная газовая постоянная,
Т - абсолютная температура,
Р0 -начальное давление газа в измерительной емкости,
ΔРi - прирост давления,
ΔVi - увеличение объема газа.

3. Способ по п.1, отличающийся тем, что общее количество газа mг, содержащегося в отобранной пробе, рассчитывается по уравнению
mг=Mn0,
где М - среднее значение молекулярной массы закачиваемого газа, а n0 - количество молей газа в пробе.

4. Способ по п.1, отличающийся тем, что количество молей газа в пробе, рассчитывается по формуле:
n 0 = R T / ( P 0 + Δ P K ) Δ V i      ,
где ΔРК - конечное приращение давления;
ΣΔVi - общий объем выделившегося газа.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522486C2

ВАСИЛЬЕВ В.К
и др., Устойчивость пен под давлением, Нефтепромысловое дело, N5, 1976, с.27-29
Способ определения дисперсности пузырьков газа в потоке жидкости 1977
  • Репин Николай Николаевич
  • Пелевич Лев Алексеевич
  • Баринов Борис Александрович
  • Герман Людмила Ивановна
SU646230A1
Способ определения дисперсного состава частиц в жидкостях,содержащих газовые пузырьки 1982
  • Месропян Эдуард Акопович
  • Ованесян Арам Гургенович
SU1124202A1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИСПЕРСНОСТИ ПЕНЫ 2001
  • Просеков А.Ю.
  • Романов А.С.
  • Просекова О.Е.
  • Кандабаев В.В.
RU2191367C1
2006
RU2416090C2
Устройство для определения угла наклона объекта 1980
  • Шиллингер Владимир Иосифович
  • Ивандиков Яков Моисеевич
  • Новик Борис Фалькович
  • Майоров Андрей Александрович
SU924505A1

RU 2 522 486 C2

Авторы

Николаев Николай Михайлович

Кокорев Валерий Иванович

Дарищев Виктор Иванович

Бугаев Константин Анатольевич

Ахмадейшин Ильдар Анварович

Чубанов Отто Викторович

Власов Сергей Александрович

Краснопевцева Наталья Валентиновна

Полищук Александр Михайлович

Даты

2014-07-20Публикация

2012-10-19Подача