СПОСОБ ПОЛУЧЕНИЯ КОМПАКТИРОВАННОГО МОДИФИКАТОРА ЧУГУНА НА ОСНОВЕ НАНОДИСПЕРСНЫХ ПОРОШКОВЫХ МАТЕРИАЛОВ Российский патент 2014 года по МПК C22C35/00 B82Y30/00 

Описание патента на изобретение RU2522926C1

Изобретение относится к металлургическому, литейному производству, в частности к модификаторам для изготовления чугунов, работающих в условиях абразивного износа.

Известен модификатор и способ его получения (патент РФ 2180363 МПК С22С 35/00, С22С 1/05). Изобретение относится к модификаторам для выплавки чугуна. Предложен модификатор, содержащий компоненты в следующем соотношении, мас.%: кремний 20-55; углерод 20-65 и/или карбид кремния 30-40; кальций 0,5-6,0; железо остальное. Модификатор дополнительно может содержать один элемент, выбранный из группы, включающей, мас.%: магний 1-3; титан 1-5; цирконий 1-5; редкоземельные металлы 1-5; стронций не более 2; барий 2-6. Способ получения модификатора включает измельчение ферросплавов - ферросилиция, силикокальция и углеродсодержащих добавок и их смешивание. После измельчения берут фракции ферросплавов с размером зерен 0,315-5,0 мкм, а углеродсодержащих добавок - с размером зерен 0,315-2,0 мкм, а после смешивания осуществляют брикетирование путем прессования. В качестве углеродсодержащих добавок используют графит тигельный или графит электродный и карбид кремния. Модификатор получают в виде брикета в форме таблетки диаметром 7-100 мм при влажности не выше 0,2%. В другом варианте берут только мелкодисперсные фракции компонентов с размером зерен 0,315-2,0 мкм. Техническим результатом изобретения является полная усваиваемость модификатора чугуном при снижении себестоимости производства.

Основные недостатки:

1) Необходимо фракционирование.

2) Брикетирование осуществляется с помощью прессования.

3) Требуются углеродсодержащие добавки.

Известен способ модифицирования чугунов и сталей (патент 2121510 МПК С21С 1/00, С21С 7/00, С22С 35/00). Изобретение относится к металлургии, а именно к способам внепечного модифицирования чугунов и сталей с помощью тугоплавких ультрадисперсных частиц, плакированных металлом-протектором, и может быть использовано в металлургии и литейном производстве. Изобретение позволяет упростить и удешевить технологию модифицирования, а также улучшить механические и эксплуатационные свойства чугунов и сталей. Согласно способу в расплав чугунов и сталей вводят модификатор, содержащий тугоплавкие дисперсные неметаллические частицы и вещество-протектор. Перед введением в расплав под струю расплавленного металла смесь тугоплавких дисперсных неметаллических частиц и вещества-протектора подвергают обработке (одновременному дроблению, активированию и плакированию тугоплавких дисперсных неметаллических частиц) до получения порошка с размером тугоплавких дисперсных неметаллических частиц не более 0,1 мкм, после чего получившийся порошок вводят в расплавленный металл. Порошок получают совместным помолом тугоплавких дисперсных неметаллических частиц и вещества-протектора при следующем соотношении мас.%: тугоплавкие дисперсные неметаллические частицы 50-90%; вещество-протектор - остальное. Помол смеси тугоплавких дисперсных неметаллических частиц и вещества-протектора могут проводить в инертной атмосфере.

Основные недостатки:

1) Необходимо плакирование металлом-протектором.

2) Перед введением в расплав под струю расплавленного металла смесь тугоплавких дисперсных неметаллических частиц и вещества-протектора подвергают обработке.

3) Помол смеси тугоплавких дисперсных неметаллических частиц и вещества-протектора рекомендуют проводить в инертной атмосфере

Известен способ получения модификатора для никелевых сплавов (патент 2447177, МПК С22С 35/00, B22F 3/12), выбранный в качестве прототипа. Изобретение относится к металлургии, в частности к формированию методами порошковой металлургии брикета для модифицирования никелевых сплавов ультрадисперсными порошками тугоплавких соединений. В смесь, содержащую порошки молибдена, хрома и никеля, вводят ультрадисперсный порошок карбонитрида титана и порошки титана, алюминия, вольфрама и ниобия. Порошок карбонитрида титана предварительно перемешивают в течение 1,5-2 часов и смешивают с порошком титана 10-20 минут. Добавляют порошок алюминия и перемешивают 10-20 минут, затем добавляют порошки вольфрама, ниобия, молибдена, хрома и никеля и перемешивают 5-10 минут. Смесь подвергают дегазации в вакуумной печи с разрежением 2-10-3-2·10-4 мм рт.ст. при температуре 250-400°C в течение 5-15 минут и перемешивают в течение 1,5-2,5 часов. Прессуют при давлении 20-100 МПа и спекают в вакууме в течение 30 мин. Изобретение позволяет снизить содержание газовых примесей и обеспечивает возможность формирования мелкого зерна, равномерно распределенного по объему модифицируемого сплава. Основные недостатки: для получения модификатора используются порошки металлов ниобия, титана, ниобия, молибдена, карбонитрида титана, что увеличивает стоимость модификатора; для получения модификатора необходимо использование вакуума и нагревания, что увеличивает трудоемкость получения модификатора; для компактирования используется прессование при давлении 20-100 МПа.

Задачей настоящего изобретения является разработка способа введения карбидо- и нитридообразующих элементов в расплав чугуна с целью повышения физико-механических характеристик сплавов и снижения выхода литейного брака (раковин, пор, трещин).

Поставленная задача решается тем, что способ получения компактированного модификатора чугуна на основе нанодисперсных порошковых материалов включает приготовление смеси нанодисперсных оксидов редкоземельных элементов (РЗЭ) (ниобий, титан, циркония, тантал) и криолита с последующим формованием, но в отличие от прототипа для компактирование осуществляется посредствам смачивания компонентов модификатора раствором глиоксаля без использования прессования. Для приготовления компактированнного модификатора на основе нанодисперсных порошковых материалов используется смесь оксидов РЗЭ (ниобия, титана, циркония, тантала) и водный раствор глиоксаля (40%), при следующем соотношении компонентов, мас.%:

криолит - 79-81%

оксид ниобия, 3-4%

оксид титана, 3-4%

оксид циркония 4-5%

оксид тантала - 1-2%

водный раствор глиоксаля (40%) - 5-7%.

Полученную смесь гомогенизируют перемешиванием, компактируют в гранулы с помощью лабораторного гранулятора ФШ-004, которые затем сушат 3 ч при 80°C.

Приготовление компактированного модификатора для обработки чугуна производится в два этапа. На первом этапе криолит и смесь нанодисперсных оксидов ниобия, титана, циркония, тантала смешивается с водным раствором глиоксаля (40%). Перемешивание проводится в течение 5 минут, после чего смесь компактируется в цилиндрические гранулы. Полученный компактированный модификатор сушится в течение 3 часов при температуре 80°C. Пример конкретного осуществления изобретения приведен ниже.

Пример 1. Смесь криолита в количестве 81 мас.% и нанодисперсных оксидов ниобия, титана, циркония, тантала в количестве 14 мас.% смешивали в смесителе периодического действия с 40% раствор глиоксаля (5 мас.%). Компактирование в цилиндрические формы проводилось на приборе ФШ-004. Полученный модификатор сушился при температуре 80°C в течение 3 часов. Гранулы обладали белым цветом и характеризуются пределом прочности при изгибе 7 кг/см.

Пример 2. Смесь криолита в количестве 79 мас.% и нанодисперсных оксидов ниобия, титана, циркония, тантала в количестве 14 мас.% смешивали в смесителе периодического действия с 40% раствора глиоксаля (7%). Компактирование и сушка проводится, как в примере 1. Гранулы обладали желтоватым цветом и характеризуются пределом прочности при изгибе 12 кг/см.

Преимуществами заявленного изобретения являются: применение в качестве связующего водного раствора глиоксаля (40%), применение которого позволяет избежать операции прессования для получения твердых гранул. Глиоксаль при попадании в железоуглеродный расплав разлагается с образованием газообразных продуктов, в результате модификатор переходит в высокодисперсное состояние. Для производства модификатора используются высокодисперсные оксиды, что обеспечивает низкую стоимость модификатора. На рисунке 1 представлены результаты исследований выхода литейного брака при использовании компактированного модификатора и при использовании ферротитана для модифицирования чугуна марки ИЧХ28Н2. (Рисунок 1 - соотношение выхода годной продукции и литейного брака при обработке компактированным модификатором (2) и ферротитаном (1)).

В таблице 1 представлены результаты исследований механических свойств чугуна марки ИЧХ28Н2, обработанного компактированным модификатором и полученного по традиционной технологии. (Таблица 1 - свойства чугуна ИЧХ28Н2)

Таблица 1 Характеристика Чугун, полученный по традиционной технологии Чугун, обработанный компактированным модификатором предел прочности
(временное сопротивление) σB, МПа
370 390
Твердость по Бриннелю, HB 560 590-600

Похожие патенты RU2522926C1

название год авторы номер документа
СПОСОБ МОДИФИЦИРОВАНИЯ ЛИТЫХ СПЛАВОВ 2012
  • Новомейский Михаил Юрьевич
  • Пичугин Василий Васильевич
  • Новомейский Юрий Донатович
RU2525967C2
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ 1992
  • Горбунов Д.М.
  • Новиков А.В.
  • Новомейский М.Ю.
  • Новомейский Ю.Д.
RU2016112C1
СПОСОБ ПОЛУЧЕНИЯ БРИКЕТА ДЛЯ ПОЛУЧЕНИЯ ТИТАН- И ЦИРКОНИЙСОДЕРЖАЩЕГО ЧУГУНА 2012
  • Новомейский Юрий Донатович
  • Новомейский Михаил Юрьевич
  • Князев Алексей Сергеевич
  • Гордеев Александр Вячеславович
RU2510684C1
СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА 1991
  • Гросс М.Ф.
  • Новомейский Ю.Д.
  • Королькова О.И.
  • Булгина Л.В.
RU2016071C1
Модификатор для железоуглеродистых расплавов и способ его изготовления 2021
  • Дынин Антон Яковлевич
  • Гольдштейн Владимир Яковлевич
  • Токарев Артем Андреевич
  • Бакин Игорь Валерьевич
  • Новокрещенов Виктор Владимирович
  • Усманов Ринат Гилемович
  • Каляскин Артем Владимирович
RU2776573C1
СПОСОБ ВНЕПЕЧНОГО МОДИФИЦИРОВАНИЯ ЧУГУНОВ И СТАЛЕЙ 2017
  • Полубояров Владимир Александрович
  • Коротаева Зоя Алексеевна
  • Жданок Александр Александрович
  • Булгаков Виктор Владимирович
RU2652932C1
Модификатор для железоуглеродистых расплавов и способ его изготовления 2022
  • Дынин Антон Яковлевич
  • Гольдштейн Владимир Яковлевич
  • Токарев Артем Андреевич
  • Бакин Игорь Валерьевич
  • Новокрещенов Виктор Владимирович
  • Усманов Ринат Гилемович
  • Каляскин Артем Владимирович
RU2779272C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ СВАРОЧНЫХ МАТЕРИАЛОВ 2015
  • Зорин Илья Васильевич
  • Соколов Геннадий Николаевич
  • Артемьев Александр Алексеевич
  • Дубцов Юрий Николаевич
  • Антонов Алексей Александрович
  • Лысак Владимир Ильич
RU2618041C2
СПОСОБ ВНЕПЕЧНОГО МОДИФИЦИРОВАНИЯ ЧУГУНОВ И СТАЛЕЙ 2007
  • Полубояров Владимир Александрович
  • Черепанов Анатолий Николаевич
  • Коротаева Зоя Алексеевна
  • Ушакова Елена Петровна
RU2344180C2
СПОСОБ МОДИФИЦИРОВАНИЯ СТАЛЕЙ И СПЛАВОВ 2010
  • Котов Александр Николаевич
  • Кривенко Георгий Георгиевич
  • Мысливец Елена Александровна
  • Чепурин Анатолий Васильевич
  • Денисов Владимир Николаевич
RU2454466C1

Иллюстрации к изобретению RU 2 522 926 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ КОМПАКТИРОВАННОГО МОДИФИКАТОРА ЧУГУНА НА ОСНОВЕ НАНОДИСПЕРСНЫХ ПОРОШКОВЫХ МАТЕРИАЛОВ

Изобретение относится к металлургическому и литейному производству, в частности к модификаторам для изготовления чугунов, работающих в условиях абразивного износа. Способ включает смешение криолита и смеси нанодисперсных порошков оксидов ниобия, титана, циркония, тантала со смешивающим агентом и последующее компактирование смеси. В качестве сшивающего агента используют водный раствор глиоксаля (40%), при этом полученную пастообразную смесь с помощью шнекового гранулятора компактируют в гранулы цилиндрической формы, которые сушат 3 ч при температуре 80°C, при следующем соотношении компонентов смеси, мас.%: криолит 79-81, оксид ниобия 3-4, оксид титана 3-4, оксид циркония 4-5, оксид тантала 1-2, водный раствор глиоксаля (40%) 5-7. Изобретение позволяет вводить в расплав чугуна карбидо- и нитридообразующие элементы для повышения физико-механических характеристик сплавов и снизить выход литейного брака. 2 пр., 1 табл, 1 ил.

Формула изобретения RU 2 522 926 C1

Способ получения компактированного модификатора чугуна на основе нанодисперсных порошковых материалов, включающий смешение криолита и смеси нанодисперсных оксидов ниобия, титана, циркония, тантала со смешивающим агентом и последующее компактирование смеси, отличающийся тем, что в качестве смешивающего агента используют водный раствор глиоксаля (40%), при этом полученную пастообразную смесь с помощью шнекового гранулятора компактируют в гранулы цилиндрической формы, которые сушат 3 ч при температуре 80°C, при следующем соотношении компонентов смеси, мас.%:
криолит 79-81
оксид ниобия 3-4
оксид титана 3-4
оксид циркония 4-5
оксид тантала 1-2
водный раствор глиоксаля (40%) 5-7.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522926C1

СПОСОБ МОДИФИЦИРОВАНИЯ ЧУГУНОВ И СТАЛЕЙ 1996
  • Черепанов А.Н.
  • Полубояров В.А.
  • Жуков М.Ф.
  • Дробяз А.И.
  • Мирошник Н.П.
  • Ушакова Е.П.
RU2121510C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ НИКЕЛЕВЫХ СПЛАВОВ 2010
  • Жеребцов Сергей Николаевич
  • Коростелев Алексей Борисович
  • Соколов Иван Павлович
  • Чумак-Жунь Дарья Александровна
RU2447177C1
Способ электрической резки металлов 1975
  • Троицкий Владимир Александрович
  • Павличенко Владимир Сергеевич
  • Жуковский Петр Григорьевич
  • Белый Николай Григорьевич
SU602330A1
US 3030206 A, 17.04.1962

RU 2 522 926 C1

Авторы

Новомейский Юрий Донатович

Новомейский Михаил Юрьевич

Князев Алексей Сергеевич

Гордеев Александр Вячеславович

Даты

2014-07-20Публикация

2013-04-09Подача