СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА С АНТИБАКТЕРИАЛЬНЫМИ СВОЙСТВАМИ НА ОСНОВЕ МОНТМОРИЛЛОНИТ СОДЕРЖАЩИХ ГЛИН Российский патент 2014 года по МПК A61K33/06 A61K33/38 A61P31/02 A61P31/04 

Описание патента на изобретение RU2522935C1

Изобретение относится к способам получения антибактериальных материалов методами модифицирования природных монтмориллонитсодержащих глин для улучшения их антибактериальных характеристик, что позволяет использовать их в традиционной и ветеринарной медицине при создании комплексных антибактериальных препаратов.

Известен способ получения антибактериального материала (патент RU 2429857, опубл. 2011 г.), в котором предлагается на первом этапе бентонит Na-формы активировать раствором хлористого натрия с последующим удалением анионов хлора при промывке и фильтровании, на втором этапе полученный полуфабрикат интеркалируют ионами металлов бактерицидного действия, например Ag+, путем обработки в водных растворах неорганических солей этих металлов. Удаляют соли натрия при промывке продукта деионизованной водой, фильтруют, сушат и измельчают до дисперсности частиц 20-150 нм, где согласно изобретению процессы активации и интеркаляции бентонита осуществляют при использовании ультразвука с частотой 20-50 кГц и интенсивностью 10-100 Вт/см2, а процесс очистки интеркалированного продукта от солей натрия производят в два этапа, на первом - продукт декантируют, а на втором этапе промывают в деионизованной воде, содержащей 30 ppm - 100 ppm комплексообразователя ионов щелочных металлов на основе краун-эфиров с молекулярной массой не более 264. При этом полученный материал содержит 2,35 и 2,95 масс.% серебра.

Известен способ получения антимикробного препарата (патент US 2012093907 (А1), опубл. 2012 г.), согласно которому 1% масс. суспензию из наносиликатных пластин обрабатывают раствором нитрата серебра (AgNO3) (1% масс.) при соотношении Ag+: глина равном 7:93. Добавляют 6~8 мл метанола. Химическое взаимодействие проводят с помощью ультразвукового перемешивания на водяной бане при 70~80°C. Недостатком данного способа является предварительное получение наносиликатных пластин из слоистых глинистых минералов, что значительно влияет на продолжительность процесса. Также используют метанол, который является ядовитым веществом. Содержание серебра в образцах, определенное масс-спектрометрическим методом (ICP-MS), соответствует примерно от 120 до 190 частей на миллиард.

Наиболее близким по существу является изобретение, заключающееся в модифицировании неорганического минерала - монтмориллонита неорганическими солями металла в полярном растворителе и последующей выдержке бентонита в растворе соли, в удалении продуктов модифицирования бентонита из раствора с последующей сушкой при температуре не выше 100°C, при этом согласно изобретению перед модифицированием бентонит обогащают ионами Na+ путем обработки его 3-10 масс.% водным раствором хлористого натрия с последующей промывкой и фильтрованием полученного полуфабриката, который затем модифицируют 10-20 масс.% раствором неорганических солей металла, в качестве которых используют нитрат серебра или сульфат меди, производят выдержку модифицируемого бентонита в указанных солевых растворах в течение 12-24 час, а затем очистку промодифицированного бентонита от солей натрия путем его промывки и фильтрации. После сушки полученный препарат измельчают до дисперсности частиц 20-150 нм, при этом обработку неорганического минерала названными растворами производят при соотношении, масс.ч. - бентонит:раствор как 1:(10-40) (А.А. Абрамян, В.И. Беклемышев, И.И. Махонин, П.И. Махонин, В.А. Солодовников. Способ получения антимикробного препарата. [Описание изобретения к патенту RU 2330673 от 22.11.2006]).

Недостатком прототипа, как и вышеуказанных аналогов, является то, что в них используется только Na-форма монтмориллонита, что ограничивает сырьевую базу, т.к. чаще встречаются монтмориллонитовые глины, представленные натрий-кальциевой, и/или кальциевой, и/или железистой формой монтмориллонита. Также к недостаткам прототипа можно отнести длительность процесса и использование при модификации высоких концентраций нитрата серебра.

Задачей настоящего изобретения является создание материала с антибактериальными свойствами на основе недефицитных монтмориллонит содержащих глин, который может эффективно подавлять рост патогенных микроорганизмов.

Техническим результатом изобретения является получение эффективного антибактериального материала на основе недефицитных натрий-кальциевых, и/или кальциевых, и/или железистых монтмориллонитов за счет менее затратного по используемым ингредиентам и продолжительности технологического процесса модифицирования ионами серебра с использованием растворов AgNO3 более низких концентраций.

Предлагаемое изобретение, заключающееся в модифицировании глины, включающей неорганический минерал - монтмориллонит, раствором нитрата серебра, промывке и последующей сушке, включает следующие новые признаки:

- глина, включающая неорганический минерал - монтмориллонит, представлена натрий-кальциевой, и/или кальциевой, и/или железистой формой монтмориллонита;

- массовое соотношение глина:модифицирующий агент составляет 1:5;

- процесс модифицирования глины водным раствором нитрата серебра AgNO3 с концентрацией 0,16-9,9 масс.% проводят при температуре в интервале от 10°C до температуры кипения, продолжительность обработки от 3 до 7 часов;

- полученный модифицированный материал промывают дистиллированной водой до тех пор, пока не будет удален избыток нитрата серебра до рН≈5-6;

- отстаивают при комнатной температуре и декантируют;

- материал высушивают при температуре 20-160°C, в результате чего получают мягкий, легко измельчаемый глинистый материал от светло-коричневого до темно-коричневого цвета.

Способ реализуют следующим образом.

Минералогический состав исходной недефицитной натрий-кальциевой, и/или кальциевой, и/или железистой глины:монтмориллонит, иллит, каолинит, кварц, мусковит, кальцит, полевые шпаты, где основным сорбционным материалом является монтмориллонит.

Исходную глину заливают модифицирующим раствором нитрата серебра с концентрацией 0,16-9,9 масс.% в соотношении глина:модифицирующий агент, равном 1:5. Перемешивают в течение от 3 до 7 часов при температуре от 10°C до температуры кипения. По завершении процесса полученный продукт промывают до рН≈5-6 для удаления избытка нитрата серебра и высушивают при температуре 20-160°C. Сушка при температуре менее 20°C происходит в значительном интервале времени и требует использования охлаждающего оборудования, что экономически нецелесообразно. Материалы, высушенные при температуре более 160°C, имеют более низкое антибактериальное действие.

Примеры выполнения

Пример 1. Исходную глину заливали модифицирующим раствором нитрата серебра с концентрацией 3,2 масс.% в соотношении глина:модифицирующий агент, равном 1:5. Перемешивали в течение 3 часов при температуре 20-30°C. По завершении процесса полученный материал промывали для удаления избытка нитрата серебра до рН≈5-6, высушивали при температуре 20-40°C.

Пример 2. Исходную глину заливали модифицирующим раствором нитрата серебра с концентрацией 3,2 масс.% в соотношении глина:модифицирующий агент, равном 1:5. Перемешивали в течение 3 часов при температуре кипения смеси. По завершении процесса полученный материал промывали для удаления избытка нитрата серебра до рН≈5-6, высушивали при температуре 80-105°C.

Пример 3. Исходную глину заливали модифицирующим раствором нитрата серебра с концентрацией 0,16 масс.% в соотношении глина:модифицирующий агент, равном 1:5.Перемешивали в течение 7 часов при температуре 20-30°C. По завершении процесса полученный материал промывали для удаления избытка нитрата серебра до рH=5-6, высушивали при температуре 100-160°C.

Пример 4. Исходную глину заливали модифицирующим раствором нитрата серебра с концентрацией 0,16 масс.% в соотношении глина:модифицирующий агент, равном 1:5. Перемешивали в течение 7 часов при температуре кипения смеси. По завершениИ процесса полученный материал промывали для удаления избытка нитрата серебра до рН≈5-6, высушивали при температуре 100-160°C.

Пример 5. Исходную глину заливали модифицирующим раствором нитрата серебра с концентрацией 9,9 масс.% в соотношении глина:модифицирующий агент, равном 1:5. Перемешивали в течение 3 часов при температуре 10-15°C. По завершении процесса полученный материал промывали для удаления избытка нитрата серебра до рН≈5-6, высушивали при температуре 100-160°C.

В образцах материалов по примерам 1-5 определяли содержание серебра. Для исследований использовался метод количественного анализа, основанный на измерении объема или массы реагента, требующегося для реакции с исследуемым веществом, - титрометрический анализ.

Титрометрический анализ по определению количества серебра в материалах, полученных по примерам 1-5, осуществляли с использованием индикаторов, фиксирующих точку эквивалентности титрования. При проведении титрометрического анализа по определению в исследуемых образцах содержания серебра (масс.%) использовали в качестве реагентов концентрированную азотную кислоту, в качестве раствора титранта - роданид аммония или калия, в качестве индикатора - раствор железоаммонийных квасцов. В результате проведенных исследований установлено, что исследуемый образец по примеру 1 содержит 3,36 масс.% серебра, исследуемый образец по примеру 2 содержит 3,61 масс.% серебра, исследуемые образцы по примеру 3 и 4 содержат серебро в количестве 0,10 и 0,20 масс.% соответственно, исследуемый образец по примеру 5 содержит 4,35 масс.% серебра. Кроме того, химический состав обогащенного и модифицированных образцов материалов по примерам 1-5 определяли методом рентгенофлуоресцентного анализа на рентгеновском спектрометре ARL OPTIM'X (таблица 1).

Таблица 1 Средний химический состав образцов материалов в пересчете на оксиды, масс.% Образец материала SiO2 Al2O3 Fe2O3 TiO2 MgO CaO K2O Na2O Ag2O Σ Обогащенная глина 60,12 19,36 5,27 0,94 3,04 8,87 2,40 0,38 - 100,38 Пример 1 59,37 13,40 4,37 0,89 2,05 8,28 4,05 0,26 6,99 99,60 Пример 2 59,69 16,79 4,06 0,92 2,34 6,18 2,16 7,51 99,65 Пример 3 59,87 18,90 4,38 0,85 3,03 8,70 3,76 0,21 99,09 Пример 4 60,31 18,60 5,90 0,82 3,22 8,12 2,30 0,42 99,69 Пример 5 58,78 13,05 4,26 0,83 2,30 7,78 3,33 8,67 100,00

Испытания эффективности бактерицидных свойств материала на основе монтмориллонитсодержащей глины модифицированной ионами серебра проводились в стерильных условиях с использованием стерильного оборудования и материалов. Для испытаний были использованы стерильные чашки Петри, содержащие стерильный мясопептонный агар (МПА) или кровяной агар с рН=7,2-7,4. Толщина слоя охлажденного МПА или кровяного агара - 2,5-3,0 мм. В питательные среды, охлажденные до 45-48°C, вносили навески стерильного материала в диапазоне от 1,56 до 100 мг на 1 мл питательной среды и взвесь исследуемых штаммов микроорганизмов. В контрольные чашки с питательной средой вносили только взвесь исследуемых микроорганизмов. Культивирование Escherichia coli, Pseudomonas aeruginosa. Salmonella dublin, Salmonella enteritidis, Staphylococcus hyicus, Staphylococcus intennedius, Staphylococcus aureus осуществляли на МПА, a Proteus vulgaris и Candida albicans - на кровяном агаре. Определение чувствительности микроорганизмов к материалам, полученным по примерам 1-5, в зависимости от их концентрации в МПА и кровяном агаре, проводили после их культивирования в термостате при температуре 37°C в течение 16-18 часов. Полученные результаты, приведенные в таблице 2, позволили установить их минимальную бактериостатическую концентрацию. Данные об эффективности бактерицидных свойств материала на основе монтмориллонит содержащей глины модифицированной ионами серебра, полученного по примерам 1-5, представлены в таблице 2.

Таблица 2 Чувствительность микроорганизмов к полученным материалам по примерам 1-5 Микроорганизмы Концентрация материала, мг/мл Количество КОЕ/мл по McFarland пример 1 пример 2 пример 3 пример 4 пример 5 контроль ** Salmonella Dublin 12,50 * * 6,25 * * 3·108 2·108 12·108 3,125 2·108 1·108 9·108 8·108 * 1,56 9·108 6·108 12·108 15·108 3·108 Salmonella enteritidis 12,50 * * 22·108 6,25 * * 2·108 1·108 3,125 2·108 6·108 18·108 20·108 * 1,56 18·108 15·108 22·108 24·108 2·108 Staphylococcus hyicus 25,00 * * 36·108 12,50 3·108 1·108 6,25 * * 9·108 8·108 3,125 6·108 9·108 33·108 30·108 * 1,56 15·108 18·108 39·108 39·108 2·108 Proteus vulgaris 12,50 * * 36·10s 6,25 * * 6·108 3·108 3,125 2·108 3·108 30·108 30·108 * 1,56 18·108 21·108 36·108 36·108 3·108 Staphylococcus aureus 25,00 * * 36·108 12,50 * * 6·108 2·108 6,25 2·108 1,5·108 33·108 30·108 * 3,125 21·108 15·108 39·108 36·108 1,5·108 Escherichia coli 25,00 * * 39·108 12,50 * * 3·108 1·108 6,25 2·108 1,5·108 36·108 30·108 * 3,125 18·108 9·108 45·108 39·108 6·108 Pseudomonas aeruginosa 25,00 * * 39·108 12,50 * * 8·108 6·108 6,25 3·108 6·108 30·108 21·108 * 3,125 18·108 15·108 33·108 33·108 3·108 Staphylococcus intermedius 25,00 * * 30·108 12,50 * * 2·108 1,5·108 6,25 2·108 3·108 21·108 18·108 * 3,125 24·108 18·108 33·108 30·108 3·108 Candida albicans 25,00 * * 39·108 12,50 * * 6·108 3·108 6,25 8·108 9·108 33·108 30·108 * 3,125 15·108 15·108 45·108 39·108 6·108 * Минимальная бактериостатическая концентрация; ** При проведении контрольных экспериментов использовали стерильный мясопептонный или кровяной агар без введения глины.

Из данных, приведенных в таблице 2, видно, что полученные материалы по примерам 1, 2 и 5 обладали более выраженным бактериостатическим действием, чем образцы материала, которые были получены по примерам 3 и 4. Рассматриваемая таблица иллюстрирует и объясняет неодинаковое проявление чувствительности исследуемых микроорганизмов к различным антибактериальным материалам, полученных по примерам 1-5, так как в данных формах соответственно содержится 3,36; 3,61; 0,10; 0,20 и 4,35 масс.% серебра. Исследуемые антибактериальные материалы, полученные по примерам 1 и 2, подавляли рост и образование колоний Salmonella Dublin, Salmonella enteritidis, Staphylococcus hyicus на поверхности МПА и Proteus vulgaris на кровяном агаре уже при концентрации 6,25 мг на 1 мл питательной среды. Более эффективное бактериостатическое действие на эти же бактерии оказывал материал, полученный по примеру 5, при концентрации 3,125 мг/мл питательной среды. В то же время минимальная бактериостатическая концентрация изучаемых антибактериальных материалов, полученных по примерам 1 и 2, для Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus intermedius на поверхности МПА и Candida albicans на кровяном агаре составила 12,50 мг материала на 1 мл питательной среды. Антибактериальный материал, полученный по примеру 5, угнетал рост данных микроорганизмов при концентрации 6,25 мг/мл питательной среды. С целью определения бактерицидной концентрации антибактериальных материалов, полученных по примерам 1-5, со смывов из чашек, где отсутствовал рост исследуемых микроорганизмов, производили посевы на плотные питательные среды МПА и кровяного агара, которые не содержали изучаемого материала. После культивирования этих посевов в термостате при температуре 37°C, в течение 16-18 часов, отсутствовал рост микроорганизмов со смывов МПА и кровяного агара, в которых минимальная бактериостатическая концентрация антибактериального материала составляла 3,125; 6,25 и 12,50 мг/мл питательной среды. Такое же бактериостатическое действие антибактериальные материалы, полученные по примерам 3 и 4, проявили по отношению к Salmonella Dublin, Salmonella enteritidis и Proteus vulgaris, но при концентрации 12,50 мг/мл. На Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus hyicus, Staphylococcus intermedius и Candida albicans данные материалы влияли бактериостатически в концентрации 25,00 мг/мл. В то же время обогащенная форма нативной монтмориллонитовой глины при концентрации 100 мг/мл МПА и кровяного агара не подавляла рост исследуемых микроорганизмов, а наоборот, усиливала. При этом количество колониеобразующих единиц в смывах с поверхности плотной питательной среды опытных чашек Петри было в 1,1-1,9 раза больше чем в контрольных, т.е. не содержащих нативной формы глины. Таким образом, поставленная задача по созданию материала с антибактериальными свойствами на основе натрий-кальциевых, и/или кальциевых, и/или железистых монтмориллонитсодержащих глин, который может эффективно подавлять рост патогенных микроорганизмов с использованием при модифицировании растворов AgNO3 более низких концентраций по сравнению с прототипом, решена.

Похожие патенты RU2522935C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭНТЕРОСОРБЕНТА 2014
  • Стопкевич Ольга Владимировна
  • Буханов Владимир Дмитриевич
  • Перистая Лидия Федотовна
  • Перистый Владимир Александрович
  • Везенцев Александр Иванович
  • Панькова Ольга Николаевна
  • Добродомова Екатерина Владимировна
RU2565196C1
КОМПОЗИЦИИ, СОДЕРЖАЩИЕ ДИБРОММАЛОНАМИД, И ИХ ПРИМЕНЕНИЕ 2011
  • Синглтон Фредди Л.
  • Гош Тиртанкар
  • Кагл Кимберли С.
RU2568745C2
СРЕДСТВО, ОБЛАДАЮЩЕЕ АНТИБАКТЕРИАЛЬНОЙ АКТИВНОСТЬЮ 2013
  • Сильников Владимир Николаевич
  • Буракова Екатерина Анатольевна
  • Королева Людмила Сергеевна
  • Яринич Любовь Александровна
RU2532328C1
Способ получения бактерицидного материала на основе органомодифицированной бентонитовой глины 2022
  • Бортников Сергей Валериевич
  • Горенкова Галина Алексеевна
  • Кобцева Анастасия Алексеевна
RU2787448C1
СПОСОБ ПОЛУЧЕНИЯ АНТИБАКТЕРИАЛЬНОГО ТЕКСТИЛЬНОГО ВОЛОКНИСТОГО МАТЕРИАЛА 2007
  • Вишняков Анатолий Васильевич
  • Манаева Татьяна Владимировна
  • Чащин Валерий Александрович
  • Хотимский Дмитрий Владимирович
RU2337716C1
КОЛЛОИДНЫЙ РАСТВОР НАНОЧАСТИЦ СЕРЕБРА, МЕТАЛЛ-ПОЛИМЕРНЫЙ НАНОКОМПОЗИТНЫЙ ПЛЕНОЧНЫЙ МАТЕРИАЛ, СПОСОБЫ ИХ ПОЛУЧЕНИЯ, БАКТЕРИЦИДНЫЙ СОСТАВ НА ОСНОВЕ КОЛЛОИДНОГО РАСТВОРА И БАКТЕРИЦИДНАЯ ПЛЕНКА ИЗ МЕТАЛЛ-ПОЛИМЕРНОГО МАТЕРИАЛА 2011
  • Александрова Валентина Андреевна
  • Широкова Людмила Николаевна
RU2474471C2
АНТИБАКТЕРИАЛЬНЫЙ ТЕКСТИЛЬНЫЙ ВОЛОКНИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2007
  • Вишняков Анатолий Васильевич
  • Манаева Татьяна Владимировна
  • Чащин Валерий Александрович
  • Хотимский Дмитрий Владимирович
RU2350356C1
АНТИБАКТЕРИАЛЬНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Вишняков Анатолий Васильевич
  • Гарбер Александр Григорьевич
  • Манаева Татьяна Владимировна
  • Чащин Валерий Александрович
RU2407550C1
КАТИОННЫЙ АНТИСЕПТИК НА ОСНОВЕ КОМПОЗИЦИЙ L-ЦИСТЕИН-СЕРЕБРЯНОГО РАСТВОРА И ПИЩЕВОГО ХИТОЗАНА 2014
  • Овчинников Максим Максимович
  • Червинец Вячеслав Михайлович
  • Червинец Юлия Вячеславовна
  • Михайлова Елена Сергеевна
  • Хижняк Светлана Дмитриевна
  • Пахомов Павел Михайлович
RU2562113C1
Способ получения биоактивной сорбционно-гелиевой композиции 2015
  • Круть Ульяна Александровна
  • Гевара Агирре Хуан Хосе
  • Шапошников Андрей Александрович
  • Везенцев Александр Иванович
RU2616250C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА С АНТИБАКТЕРИАЛЬНЫМИ СВОЙСТВАМИ НА ОСНОВЕ МОНТМОРИЛЛОНИТ СОДЕРЖАЩИХ ГЛИН

Изобретение относится к способу получения материала с антибактериальными свойствами на основе монтмориллонитсодержащих глин. Неорганическую глину, представленную натрий-кальциевой, и/или кальциевой, и/или железистой формой монтмориллонита, модифицируют водным раствором нитрата серебра с концентрацией 0,16-9,9 масс.% в массовом соотношении глина:водный раствор нитрата серебра 1:5. Модифицирование проводят при перемешивании в течение от 3 до 7 часов при температуре в интервале от 10°C до температуры кипения. Полученный материал промывают дистиллированной водой до рН≈6-5, пока не будет удален избыток нитрата серебра. Отстаивают при комнатной температуре и декантируют. Высушивают материал при температуре 20-160°C. Изобретение обеспечивает получение эффективного антибактериального материала для традиционной и ветеринарной медицины. 2 табл., 5 пр.

Формула изобретения RU 2 522 935 C1

Способ получения материала с антибактериальными свойствами на основе монтмориллонитсодержащих глин, заключающийся в модифицировании глины, включающей неорганический минерал - монтмориллонит, раствором нитрата серебра, промывке и последующей сушке, отличающийся тем, что глина, включающая неорганический минерал - монтмориллонит, представлена натрий-кальциевой, и/или кальциевой, и/или железистой формой монтмориллонита; массовое соотношение глина:модифицирующий агент составляет 1:5, при этом концентрация модифицирующего агента - водного раствора нитрата серебра - составляет 0,16-9,9 масс.%; процесс модифицирования проводят при перемешивании в течение от 3 до 7 часов при температуре в интервале от 10°C до температуры кипения, промывку полученного модифицированного материала осуществляют дистиллированной водой до рН≈5-6, пока не будет удален избыток нитрата серебра; отстаивают при комнатной температуре и декантируют, после чего материал высушивают при температуре 20-160°C.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522935C1

CN 101589727 A 02.12.2009
CN 102125055 A 20.07.2011
WO 2011160860 A1 29.12.2011
СПОСОБ ПОЛУЧЕНИЯ АНТИМИКРОБНОГО ПРЕПАРАТА 2006
  • Абрамян Ара Аршавирович
  • Беклемышев Вячеслав Иванович
  • Махонин Игорь Иванович
  • Махонин Петр Иванович
  • Солодовников Владимир Александрович
RU2330673C1
СОСТАВ ДЛЯ АНТИСЕПТИЧЕСКОЙ ОБРАБОТКИ ТКАНЫХ МАТЕРИАЛОВ 2009
  • Беклемышев Вячеслав Иванович
  • Махонин Игорь Иванович
  • Дронов Сергей Васильевич
  • Шавва Игорь Иванович
  • Локонова Наталья Алексеевна
  • Афанасьев Михаил Мефодиевич
  • Махонин Петр Иванович
  • Солодовников Владимир Александрович
RU2408755C1
СОСТАВ ДЛЯ АНТИСЕПТИЧЕСКОЙ ОБРАБОТКИ ТКАНЫХ МАТЕРИАЛОВ 2010
  • Беклемышев Вячеслав Иванович
  • Мауджери Умберто Орацио Джузеппе
  • Махонин Игорь Иванович
  • Абрамян Ара Аршавирович
  • Солодовников Владимир Александрович
  • Афанасьев Михаил Мефодъевич
  • Филиппов Константин Витальевич
RU2426560C1

RU 2 522 935 C1

Авторы

Буханов Владимир Дмитриевич

Везенцев Александр Иванович

Пономарева Надежда Федоровна

Скворцов Владимир Николаевич

Даты

2014-07-20Публикация

2013-02-19Подача