В настоящее время измерения тепловых величин, таких как, например, холодопроизводительность охлаждающих устройств (кондиционеров), требуют значительных затрат труда на обеспечение точности измерения температуры, расхода теплоносителя, вычислительных работ.
Известные методики измерения температуры теплоносителя-воздуха (Преображенский В.П. «Теплотехнические измерения и приборы», г.Москва, изд. Энергия, 1976 г., стр.238) не обеспечивают необходимой точности измерения из-за наличия лучистого теплообмена теплоприемника (например, термопары) с окружающей средой, наличия оттока тепла за счет теплопроводности самого теплоприемника; неравномерности теплового поля на выходе кондиционера и т.д.
Поправки на лучистый теплообмен, которые могут быть значительными, зависят от таких величин, как приведенный коэффициент черноты двух тел, который может быть определен приблизительно, так же как и поправки, связанные с оттоком тепла по теплоприемнику.
Ошибки измерения можно снизить, применяя отражающие экраны, дополнительные слои изоляции и т.д., однако полностью их устранить нельзя.
Более того, ошибки, связанные с лучистым теплообменом и оттоком тепла по теплоприемнику, зависят от скорости теплоносителя - чем ниже его скорость, тем ниже коэффициент теплоотдачи от теплоприемника к теплоносителю, тем выше доля потерь за счет лучистого теплообмена и оттока тепла по теплоприемнику.
Ошибку, связанную с неравномерностью теплового поля при измерении температуры воздушного потока на выходе кондиционера, можно снизить лишь значительным количеством замеров и выведением средней величины температуры; однако в этих же точках необходимо произвести еще и замеры расхода теплоносителя (его скорости).
Известные методики измерения расхода теплоносителя (Преображенский В.П. «Теплотехнические измерения и приборы», г.Москва, изд. Энергия, 1976 г., стр.509) с помощью крыльчатки (скоростимера) не обеспечивают необходимой точности также из-за влияния на измерения атмосферного давления и влажности воздуха.
Методики измерения расхода тепла (в нашем случае холодопроизводительности) (Преображенский В.П. «Теплотехнические измерения и приборы», г.Москва, изд. Энергия, 1976 г., стр.527) также связаны с замерами разности температуры теплоносителя и его расхода. По этим данным производится расчет тепла как Qo=GpcpΔt,
где Qo - количество тепла, переданное теплоносителю;
Gp - расход теплоносителя;
cp - теплоемкость теплоносителя;
Δt - разность температуры теплоносителя на входе и выходе теплообменного устройства.
Подобная методика нуждается в коррекции как при измерении температур, так и при измерении расхода теплоносителя, при котором ошибки лишь частично устраняются усложнением измерительной схемы, а полностью устранить их не представляется возможным. Более того, с помощью этой методики невозможно произвести точные замеры холодопроизводительности при высокой влажности воздуха (φ>50%), поскольку часть холодопроизводительности расходуется на объемную конденсацию водяных паров, которая снижает разность температуры Δt, а следовательно, занижает холодопроизводительность Qo.
Предлагаемый способ измерения Qo охлаждающего устройства (кондиционера) позволяет исключить недостатки с помощью дополнительного компенсационного устройства с нагревателем, обеспечивающим нагрев охлажденного кондиционером воздуха до некоторой температуры, в том числе и равной температуре на входе кондиционера, т.е. при таком нагреве температура входа кондиционера равна температуре выхода компенсационного устройства (tвхода=tвыхода компенс. устр.).
Компенсационное устройство (рис.1) представляет собой теплоизолированный полый короб (1), полость которого является воздуховодом (2), снабженный спиралевидным электрическим нагревателем (3). Электрический нагреватель, подвешенный на изоляторах на входе воздуховода, равномерно распределен по всему сечению полости и служит для равномерного прогрева воздушного потока, не создавая при этом сколько-либо заметного гидравлического сопротивления.
На выходе компенсационного устройства, в центре сечения полости, установлен теплоприемник (4). Температура входа кондиционера (5) измеряется с помощью теплоприемника (6). Длина короба (воздуховода), а также его внутреннее сечение выбраны из необходимости, с одной стороны, обеспечения беспрепятственного прохождения через него теплоносителя (воздуха), с другой стороны, его хорошего перемешивания в процессе прохождения по воздуховоду с целью получения однородных тепловых полей на выходе.
Внутреннее сечение воздуховода соответствует сечению кондиционирующего канала кондиционера; а длина воздуховода составляет 5-6 длин наименьшей из сторон сечения воздуховода, что обеспечивает полное перемешивание воздушного потока.
Компенсационное устройство снабжено также системой регулирования (7) подающегося на нагреватель напряжения, а также приборами (8), измеряющими потребляемую мощность нагревателем.
Предложенный способ измерения позволяет определить холодопроизводительность кондиционера двумя методами: при полной компенсации температуры, когда температура входа кондиционера равна температуре выхода компенсационного устройства, а также при отсутствии компенсации температуры.
Создав на выходе компенсационного устройства с помощью нагревателя температуру, равную температуре входа работающего кондиционера, и измерив потребляемую мощность нагревателя, находят холодопроизводительность кондиционера, которая будет эквивалентна этой мощности Wнагр=Qo конд.
Указанный метод позволяет исключить ошибки измерения, связанные с оттоком тепла по теплоприемнику, за счет теплопроводности, а также за счет лучистого теплообмена теплоприемника с окружающей средой; позволяет исключить ошибки, связанные с определением расхода теплоносителя (оба теплоприемника находятся при комнатной температуре, а расход теплоносителя не определяется).
Этот метод позволяет также исключить ошибки, связанные с влажностью и другими параметрами атмосферы. Так, например, при высокой влажности наиболее энергозатратная объемная конденсация водяных паров, снижающая разность температуры между входом и выходом кондиционера, возвращает эту энергию на выходе компенсационного устройства. При неполной компенсации холодопроизводительности (Wнагр</Qо конд/) или превышающей ее (Wнагр>/Qo конд/) холодопроизводительность рассчитывается так:
Qо конд=Wнагр/(1-Δtн/Δto),
где Δtо - разность температуры между входом кондиционера и выходом компенсационного устройства при отключенном нагревателе;
Δtн - разность температуры между входом кондиционера и выходом компенсационного устройства с включенным нагревателем.
При этом возможен выбор такого режима нагрева, при котором ошибки измерения Δtн сопоставимы с ошибками измерения Δto и взаимно исключающиеся и в то же время позволяющего рассчитывать Qo конд с достаточной точностью.
Данный метод характеризуется еще и тем, что нет необходимости производить большое количество замеров; достаточно зафиксировать теплоприемник на выходе компенсационного устройства в какой-либо одной точке (например, в центре его внутреннего сечения), при этом ошибки, связанные с неравномерностью теплового поля, также взаимно исключаются.
Из полученных результатов можно также оценить расход теплоносителя (воздуха):
Gp=Qо конд/срΔtо.
название | год | авторы | номер документа |
---|---|---|---|
МАЛОГАБАРИТНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ КОНДИЦИОНЕР | 2012 |
|
RU2529045C2 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА ПАССАЖИРСКОГО ЖЕЛЕЗНОДОРОЖНОГО ВАГОНА | 1998 |
|
RU2169090C2 |
СПОСОБ ПОЛУЧЕНИЯ ХОЛОДА В УСТРОЙСТВАХ ДЛЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ОХЛАЖДЕНИЯ | 1968 |
|
SU213046A1 |
Устройство для измерения лучистых тепловых потоков | 1980 |
|
SU932295A1 |
Способ воздушного термостатирования отсеков космического аппарата при наземных испытаниях и устройство для его осуществления | 2017 |
|
RU2657603C1 |
АБСОРБЦИОННЫЙ КОНДИЦИОНЕР АВТОМОБИЛЯ (ВАРИАНТЫ) | 2022 |
|
RU2787633C1 |
СПОСОБ ИНДИВИДУАЛЬНОГО РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В КУПЕ ПАССАЖИРСКОГО ВАГОНА И СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2004 |
|
RU2270117C1 |
СПОСОБ КОСВЕННО-ИСПАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ ВОЗДУХА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2018 |
|
RU2692180C1 |
Способ тепловлажностной обработки воздуха в центральной многозональной системе кондиционирования | 1986 |
|
SU1379577A1 |
СПОСОБ ОТРАБОТКИ В ЛАБОРАТОРНЫХ УСЛОВИЯХ ПАРАМЕТРОВ РАБОТЫ МАГНИТОКАЛОРИЧЕСКИХ РЕФРИЖЕРАТОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2354898C2 |
Изобретение относится к области приборостроения и может быть использовано для определения холодопроизводительности охлаждающих устройств. Заявленный способ измерения холодопроизводительности охлаждающего устройства (кондиционера) основывается на использовании компенсационного устройства с регулируемым нагревателем, обеспечивающим либо полную, либо частичную компенсацию температуры воздушного потока кондиционирующего контура. Технический результат - повышение точности определения холодопроизводительности охлаждающего устройства. 3 з.п. ф-лы, 1 ил.
1. Способ измерения холодопроизводительности охлаждающего устройства (кондиционера), заключающийся в измерении температуры теплоносителя на входе и выходе устройства, а также расхода теплоносителя, отличающийся тем, что к выходу кондиционирующего контура кондиционера подведено компенсационное устройство в виде полого короба, являющегося воздуховодом с внутренним сечением, соответствующим выходному сечению кондиционера, и снабженного регулируемым электрическим нагревателем, потребляемая мощность которого регистрируется с помощью вторичных приборов, а также теплоприемником на выходе воздушного потока, причем после установления с помощью нагревателя нулевого температурного баланса между входом работающего кондиционера и выходом компенсационного устройства холодопроизводительность кондиционера соответствует потребляемой нагревателем мощности: Wнагр=Qо конд.
2. Способ по п.1, отличающийся тем, что при не нулевом температурном балансе в случае отсутствия компенсации температуры между входом кондиционера и выходом компенсационного устройства холодопроизводительность кондиционера рассчитывается по соотношению:
Qо конд=Wнагр/(1-Δtн/Δtо),
где Wнагр - мощность нагревателя; Δtн - разность температуры между входом кондиционера и выходом компенсационного устройства при включенном нагревателе; Δtо - разность температуры между входом кондиционера и выходом компенсационного устройства при выключенном нагревателе компенсационного устройства.
3. Способ по п.1, отличающийся тем, что нагрев воздушного потока в компенсационном устройстве осуществляется с помощью электрического нагревателя, подвешенного на изоляторах в начале воздушного канала и равномерно распределенного по его внутреннему сечению.
4. Способ по п.1, отличающийся тем, что компенсационное устройство имеет сечение полости (воздуховода), соответствующее сечению кондиционирующего канала кондиционера, а длина воздуховода составляет 5-6 длин наименьшей из сторон сечения воздуховода.
УСТРОЙСТВО для ОПРЕДЕЛЕНИЯ ХОЛОДОПРОИЗВОДИТЕЛЬ- НОСТИ КОМПРЕССИОННОГО холодильного АГРЕГАТА | 0 |
|
SU377593A1 |
СПОСОБ ИЗМЕРЕНИЯ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ ХОЛОДИЛЬНОЙ СИСТЕМЫ | 2011 |
|
RU2467267C1 |
Способ определения холодопроизволительности холодильного агрегата | 1974 |
|
SU512394A1 |
УСТРОЙСТВО для КАЛОРИМЕТРИЧЕСКИХ ИСПЫТАНИЙ КОМПРЕССИОННОГО ХОЛОДИЛЬНОГО АГРЕГАТА | 0 |
|
SU326421A1 |
JP 2003075043 A, 12.03.2003 |
Авторы
Даты
2014-09-27—Публикация
2013-03-29—Подача