Изобретение относится к биотехнологии, в частности к микробиологическим способам очистки окружающей среды, и может применяться для почвообразования и восстановления плодородия почвогрунтов, загрязненных нефтью и нефтепродуктами.
Известны разнообразные биопрепараты на основе микроорганизмов и их ассоциаций, используемых для снижения нефти и нефтепродуктов в почвогрунтах. Например, известен консорциум штаммов микроорганизмов - деструкторов, состоящий из 4 штаммов рода Alcaligenes и 1 штамма рода Pseudomonas (патент РФ № 2160719, МПК C02F 3/34).
Указанные консорциумы-деструкторы углеводородов составлены из микроорганизмов-прокариотов, что ограничивает возможность их применения. Так как указанные микроорганизмы характеризуются отсутствием в клетках настоящего ядра с оболочкой, отделяющей его от протоплазмы, что позволяет данные микроорганизмы относить к примитивной группе, т.е. отсутствием возможности передавать последующим поколениям приобретенные признаки, в данном случае разлагать нефть. (Н.Ф.Реймерс, А.В.Яблоков «Словарь терминов и понятий, связанных с охраной живой природы», изд. «Наука», М., 1982 г. с.98, 42).
Известен способ получения биопрепарата «Биава» для рекультивации почв (патент РФ № 2248255, МПК В09С 1/10), который содержит в своем составе пористый носитель, содержащий стеклообразные силикофосфаты переменного состава и неоднородного строения, обеспечивающие оптимальные условия для иммобилизации и жизнедеятельности клеток микроорганизмов на пористой структуре, в которой содержатся одновалентные и 2 - валентные щелочноземельные катионы, легирующие микроэлементы, добавки - оксиды металлов, влияющие на кинетику. В качестве активных микроорганизмов вносятся протеолитические и амилолитические микроорганизмы, или актиномицеты, или азотофиксирующие бактерии, или целлюлозоразлагающие и гумусоразлагающие микроорганизмы, или денитрофикаторы.
Известный биопрепарат имеет сложную технологию получения в связи с тем, что включает глубинное культивирование микроорганизмов на жидкой питательной среде, подготовку стерильного носителя - стеклообразных силикофосфатов со сквозными порами для иммобилизации и жизнедеятельности клеток активных микроорганизмов на пористой структуре. Это удорожает процесс его получения и использования, что ограничивает его использование на больших площадях.
Известен способ получения препарата гуминовых кислот для почвообразования. (а.с. РФ № 1213760 МПК C12N 1/00). Препарат готовится из отходов угольной промышленности, инокулированных микроорганизмами с последующим культивированием водной суспензии в течение 10-15 суток до лизиса бактериальных культур. В течение приготовления препарата в водную суспензию вводят два раза фенол, который является источником органического углерода для жизнедеятельности микроорганизмов.
Однако фенол одновременно является бактерицидным веществом, приводящий к лизису микроорганизмов, т.е. препарат, не содержащий активной микрофлоры, становится менее активным.
В указанном известном решении длительное приготовление препарата (10-15 суток), а также ограниченное содержание в препарате живых бактериальных клеток в виду их лизиса и добавления фенола в препарат в качестве источника углерода указывают на недостатки данного препарата.
Кроме того, получение жидкого препарата требует быстрого его использования ввиду того, что жидкие препараты быстро портятся и теряют свою активность. В этой связи такие препараты используют в той же местности, где они получены, т.к. их нельзя перевозить на большие расстояния.
Известен способ получения препарата, заключающийся в обработке отходов угольной промышленности путем добавления к ним воды и инокулирования полученного раствора культурами Pseudomonas aeruginosa и Bacillus megaterium с последующей экспозицией смеси при t 28-30°C в течение 10-12 суток (а.с. РФ № 1077277 МПК C12N 1/00), принятый нами за прототип. Препарат, полученный данным способом, содержит незначительное содержание гуминовых кислот (57%) и карбоновых кислот (11%), а аминокислоты и полисахариды отсутствуют.
Данный способ имеет те же недостатки, как и вышеуказанные, в силу того, что относится к получению жидкого препарата. Кроме того, при перевозках на большие расстояния он теряет активность, которая и так не очень высокая, также уменьшается активность в его составе аминокислот - дополнительный источник питания для аборигенной микрофлоры и не содержит полисахариды, участвующие в процессе структурирования рекультивируемых почвогрунтов. Отходы угольной промышленности в своем составе имеют оксиды токсичных металлов: меди, хрома, цинка, бария, которые отрицательно действуют на почвенную микрофлору и выращиваемые растения.
Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение в биопрепарате содержания гуминовых, карбоновых, аминокислот и полисахаридов при минимальных затратах и сроков его изготовления.
Для достижения указанного технического результата в способе получения биопрепарата для очистки и восстановления плодородия почвогрунтов, загрязненных нефтепродуктами, на основе наполнителя и бактериальных культур, согласно изобретению, готовят смесь из жидких бактериальных культур, в качестве которых берут штаммы Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12, в соотношении соответственно 3:1,5:0,5- 3:2:1, и осуществляют обработку отходов обогащения бурого угля путем добавления к ним полученной жидкой смеси штаммов с последующим перемешиванием и высушиванием приготовленной смеси в течение не менее 2,5 суток при комнатной температуре, при этом отходы обогащения бурого угля и предварительно подготовленную смесь штаммов берут в соответственно соотношении, масс.%: 40-50:50-60.
Штамм Pseudomonas fluorescens ВКГ депонирован в коллекции ГНУ ВНИИ сельскохозяйственной микробиологии (г. Санкт-Петербург) 05 июля 2011 под регистрационным номером RCAM00538,
Штамм КОА-4 Pseudomonas fluorescens депонирован в коллекции ГНУ ВНИИ сельскохозяйственной микробиологии (г. Санкт-Петербург) 2 августа 2002 г. под регистрационным номером "ND-610 ВНИИСХМ".
Штамм Azotobacter chroococcum АИН депонирован в коллекции ГНУ ВНИИ сельскохозяйственной микробиологии (г. Санкт-Петербург) 05 июля 2011 г. под регистрационным номером RCAM00539.
Заявленная совокупность существенных признаков позволяет обеспечить повышение в биопрепарате содержание гуминовых, карбоновых, аминокислот и полисахаридов при минимальных затратах и сроков его изготовления. Использование отходов обогащения бурого угля позволяет исключить влияние вредных микроэлементов на процесс очистки и восстановления плодородия почвогрунтов.
Способ осуществляется следующим образом.
Пример 1. Для получения биопрепарата брали отходы обогащения бурого угля, содержащие оксиды следующего состава, (%): марганца (IV) - 0,01; железа (III) - 0,82; кремния (IV) - 13,8; алюминия - 4,01; кальция - 0,19; магния - 0,10; фосфора (V) - 0,03; калия - 0,06; натрия - 0,02; серы - 0,36. Массовая доля влаги в отходах и потери массы при прокаливании составили соответственно, (%): 73,17 и 5,93.
Отходы обогащения бурого угля данного состава используется без дробления, т.к. имеет фракционный состав следующего содержания, что значительно удешевляет технологию приготовления биопрепарата.
Для получения биопрепарата брали штаммы Pseudomonas fluorescens ВКГ RCAM00538, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ и Azotobacter chroococcum АИН RCAM00539.
Штаммы микроорганизмов предварительно выделяли из нефтезагрязненных земель Пермского края. Микроорганизмы адаптированы к химическому составу нефтегрунтов в природных условиях.
Штамм Pseudomonas fluorescens ВКГ RCAM00538 выращивали на питательной среде следующего состава (г/л):
В приготовленную и простерилизованную в автоклаве при 1 атмосфере в течение 30 минут питательную среду добавляли 1 мл стерильной смеси микроэлементов. Смесь микроэлементов содержит в 1 л воды, (г): H3BO3 - 5; (NH4)2MoO4 - 5; KJ - 0,5; NaBr - 0,5; ZnSO4·7H2O - 0,2; Al2(SO4)3 - 0,3. Указанную смесь микроэлементов предварительно стерилизуют в автоклаве при давлении 0,5 атмосфер в течение 15 минут. В стерильную питательную среду вышеуказанного состава инокулировали бактериальный штамм Pseudomonas fluorescens ВКГ RCAM00538 в количестве 1 мл с титром 10-13 и ставили в термостат при температуре 28°C. Штамм в термостате подвергали аэрированию с помощью аэратора FAT-mini в течение 2-х суток. Через 2 суток бактериальная культура штамма Pseudomonas fluorescens ВКГ RCAM00538 с титром 10 готова для использования. Аналогично выращивали штамм с титром 10-12, 10-10.
Штамм КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ выращивали на питательной среде следующего состава, (г/л):
В приготовленную и простерилизованную в автоклаве при 1 атмосфере в течение 30 минут питательную среду добавляют 1 мл стерильной смеси микроэлементов. Смесь микроэлементов содержит в 1 л воды, (г): H3BO3 - 5; (NH4)2MoO4 - 5; KJ - 0,5; NaBr - 0,5; ZnSO4 - 0,2; Al2(SO4)3 - 0,3. Указанную смесь микроэлементов предварительно стерилизуют в автоклаве при давлении 0,5 атмосфер в течение 15 минут. В стерильную питательную среду вышеуказанного состава инокулировали штамм КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ в количестве 1 мл с титром 10-10 и ставили в термостат при температуре 28°C. Штамм в термостате подвергали аэрированию с помощью аэратора FAT-mini в течение 2 суток. Через 2 суток бактериальная культура штамма КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10 готова для использования. Аналогично выращивали штамм с титром 10-11, 10-12.
Штамм Azotobacter chroococcum АИН RCAM00539 выращивали на питательной среде следующего состава, (г/л):
В приготовленную и простерилизованную в автоклаве при 1 атмосфере в течение 30 минут питательную среду добавляют 1 мл стерильной смеси микроэлементов. Смесь микроэлементов содержит в 1 л воды, (г): H3BO3 - 5; (NH4)2MoO4 - 5; KJ - 0,5; NaBr - 0,5; ZnSO4 - 0,2; Al2(SO4)3 - 0,3. Указанную смесь микроэлементов предварительно стерилизуют в автоклаве при давлении 0,5 атмосфер в течение 15 минут. В стерильную питательную среду вышеуказанного состава инокулировали штамм Azotobacter chroococcum АИН RCAM00539 в количестве 1 мл с титром 10-12 и ставили в термостат при температуре 28°C. Культуру штамма в термостате подвергали аэрированию с помощью аэратора FAT-mini в течение 2 суток. Через 2 суток бактериальная культура штамма Azotobacter chroococcum АИН RCAM00539 с титром 10-12 готова для использования. Аналогично выращивали штамм с титром 10-11, 10-10.
Пример 2. Для получения биопрепарата заявленным способом брали полученные жидкие штаммы Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10 и Azotobacter chroococcum АИН RCAM00539 с титром 10-12 в соотношении 3:1,5:0,5 и смешивали между собой. Полученную жидкую смесь вышеуказанных штаммов приливали к сухим отходам обогащения бурого угля, при этом соотношение отходов обогащения бурого угля и смеси штаммов Pseudomonas fluorescens ВКГ RCAM00538, КОА-4 Pseudomonas fluorescens ND-610 ВНИ-ИСХМ и Azotobacter chroococcum АИН RCAM00539 составляет соответственно 50:50 мас.%. Полученную смесь перемешивали, раскладывали на горизонтальной поверхности и сушили при комнатной температуре в течение 2 суток. Просушенную смесь растирали металлическим катком с диаметром приблизительно 10 см, таким образом, чтобы не оставалось крупных кусков, в результате получили биопрепарат с фракционным составом:
содержащий штаммы Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12. В полученном биопрепарате определяли количество гуминовых, карбоновых, аминокислот, полисахаридов и биомассу по сухому весу, содержание которых составило, (%): гуминовых кислот - 68,5, карбоновых кислот - 12,6, аминокислот - 2,8, полисахаридов - 3,1 и содержание общей биомассы - 14,9. Данные результаты представлены в таблице 1.
Пример 3. Аналогично примеру 2 готовили биопрепарат заявленным способом, но соотношение отходов обогащения бурого угля и смеси жидкой культуры штаммов Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12 составляло соответственно 45:55 масс.%. Высушивание приготовленной смеси проводили при комнатной температуре в течение 2,5 суток. Для приготовления жидкой смеси культур штаммов Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12 их брали соответственно в соотношении 3:2:0,5.
В полученном биопрепарате определяли количество гуминовых, карбоновых, аминокислот, полисахаридов и биомассу по сухому весу, содержание которых составило, (%): гуминовых кислот - 72,7, карбоновых кислот - 15,3, аминокислот - 3,8, полисахаридов - 3,7 и содержание общей биомассы штаммов - 16,1. Данные результаты представлены в таблице 1.
Пример 4. Аналогично примеру 2 готовили биопрепарат заявленным способом, но соотношение отходов обогащения бурого угля и смеси жидкой культуры штаммов Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND- 610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12 составляло 40:60 в масс.% соответственно. Высушивание приготовленной смеси проводили при комнатной температуре в течение 3 суток. Для приготовления жидкой смеси культур штаммов Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12 их брали соответственно в соотношении 3:2:1.
В полученном биопрепарате определяли количество гуминовых, карбоновых, аминокислот, полисахаридов и биомассу по сухому весу, содержание которых составило, (%): гуминовых кислот - 72,6, карбоновых кислот - 15,3, аминокислот - 3,6, полисахаридов - 3,6 и содержание общей биомассы штаммов - 16,0. Данные результаты представлены в таблице 1.
Пример 5. Аналогично примеру 2 готовили биопрепарат заявленным способом, но соотношение отходов обогащения бурого угля и смесь жидкой культуры штаммов Pseu-domonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12 составляло соответственно 55:45 масс.%. При этом для приготовления жидкой смеси культуры штаммов, они взяты в соотношении соответственно 3:1,0:0,5.
Сушку отходов со смесью с жидкими штаммами проводили при комнатной температуре в течение 3 суток. В полученном биопрепарате определяли количество гуминовых, карбоновых, аминокислот, полисахаридов и биомассу по сухому весу, содержание которых составило: гуминовых кислот - 67,7%, карбоновых кислот - 10,8%, аминокислот - 1,9%, полисахаридов - 2,8% и содержание общей биомассы штаммов - 11,5,0%. Данные результаты представлены в таблице 1.
В процессе получения биопрепарата заявленным способом было определено опытным путем время сушки препарата в зависимости от его влажности: препарат, содержащий шлам бурого угля в количестве 50% и жидкую смесь штаммов - 50% (Pseudomonas fluorescens ВКГ RCAM00538, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ и Azotobacter chroococcum АИН RCAM00539), вначале сушки имел влажность 60% и подсыхал в течение 2 дней. Препарат, содержащий 45% шлама и жидкой смеси штаммов - 55%, подсыхал за 2,5 суток при влажности 68%, и препарат, содержащий шлам в количестве 40% и остальное - жидкая смесь штаммов 60%, имел влажность 70% и подсыхал в течение 3 суток.
Пример 6. В качестве контроля сравнивали биопрепарат, полученный заявленным способом, по максимальному содержанию гуминовых, карбоновых, аминокислот, полисахаридов и биомассы Pseudomonas fluorescens ВКГ с титром 10-13, КОА-4 Pseudomonas fluorescens 10-10 и Azotobacter chroococcum АИН RCAM00539 10-10 в полученных вариантах, содержащих отходы бурого угля и смеси штаммов в соотношениях 45%-55%, 50%-50% и 40-60%, с препаратом, полученным известным способом. Результаты представлены в таблице 2.
В оптимальном варианте при соотношении 45:55% отходов обогащения бурого угля и смеси штаммов Pseudomonas fluorescens ВКГ с титром 10-13, КОА-4 Pseudomonas fluorescens 10 и Azotobacter chroococcum АИН RCAM00539 10 в биопрепарате, полученного заявляемым способом, по сравнению с аналогом состав карбоновых и аминокислот в биопрепаратах представлены в таблице 3.
Проведенные испытания показали, что в биопрепарате, полученным заявленным способом, содержание составило, (%): гуминовые кислоты в количестве - 72,7; карбоновые - 15,3; аминокислоты - 3,8 и полисахариды - 3,7, при содержании биомассы (мг/кг) - 16,1.
В известном препарате содержатся только гуминовые и карбоновые кислоты, (%) - соответственно 57 и 11,97. А содержание биомассы - 14,0 мг/кг. Аминокислоты и полисахариды препарат не содержит.
Количественное содержание карбоновых и аминокислот в биопрепаратах представлено в таблице 4.
Как видно, биопрепарат, полученный заявленным способом, содержит значительно больше карбоновых кислот, таких как уксусной - 2,2%, в известном -1,88%; пропионовой - 1,7%, в известном 0,1%; Аминокислоты, такие как: аспарагиновая - 2,1%; глютаминовая - 1,7%, в известном препарате данные компоненты отсутствуют.
Как видно в биопрепарате, полученном заявленным способом, содержания гуминовых, карбоновых, аминокислот и полисахаридов значительно выше при минимальных затратах и сроков его изготовления.
При получении биопрепарата, заявленным способом, при содержании отходов обогащения бурого угля и смеси штаммов 50% и 50%; 45% и 55% были проведены опыты по определению активности титров штаммов, содержащих Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, 10-12 и 10-11, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10,10-9 и 10-8 и Azotobacter chroococcum АИН RCAM00539 с титром 10-12, 10-11 и 10-10, данные представлены в таблице 5.
Результаты опытной проверки показали, что наилучшие результаты оказались в опыте, включающем 45% отхода обогащения бурого угля и 55% смеси штаммов Pseudomonas fluorescens ВКГ RCAM00538 с титром Ю-13, КОА-4 Pseudomonas fluorescens. с титром 10-10 Azotobacter chroococcum АИН RCAM00539 с титром 10-12, взятых в соотношении соответственно 3:2:0,5, что видно по содержанию гуминовых, карбоновых, аминокислот, полисахаридов, и по содержанию биомассы микроорганизмов, содержание которых составляет соответственно, % - 72,7; 15,3; 3,8; 3,7; 16,1.
Также в оптимальном варианте, содержащим 45% шлама обогащения бурого угля, смеси штаммов в количестве 55% был проверен титр Pseudomonas fluorescens ВКГ RCAM00538, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ и Azotobacter chroococcum АИН RCAM00539. В результате исследований было выявлено, что при титре вышеуказанных микроорганизмов - 10-13, 10-10 и 10-12 были получены оптимальные варианты на содержание гуминовых, карбоновых, аминокислот, полисахаридов и биомассы при соотношении штаммов: 3:2:0,5.
При содержании в препарате 50% отходов обогащения бурого угля и 50% культуральной смеси штаммов, при титрах 10-13, 10-10, 10-12 соответственно штамма Pseudomonas fluorescens ВКГ, КОА-4 Pseudomonas fluorescens и Azotobacter chroococcum АИН RCAM00539, взятых в соотношении 3:1,5:0,5- количество гуминовых, карбоновых, аминокислот и биомассы микроорганизмов соответственно составило, (%): 68,5; 12,6;2,8; 3,1; 12,4. В препаратах с более низкими титрами количество вышеуказанных ингредиентов было значительно меньшим.
Пример 7. Для изучения возможности использования биопрепарата, полученного заявленным способом, проводили испытания в вегетационных сосудах в лабораторных условиях. Емкость вегетационных сосудов составила 3 л, высота 25 см. Сосуды заполняли почвогрунтами, загрязненными нефтепродуктами. Вес почвогрунтов при набивке составил 2,5 кг. Величина pH почвогрунтов 7,2.
В почвогрунты посеяли семена злакового растения житняка, по 30 семян на сосуд. Семена были обработаны сухим биопрепаратом, полученным заявляемым способом, содержащим штаммы Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12. Затем почвогрунты, обработанные биопрепаратом, поливались дистиллированной водой в количестве 100 мл на сосуд.
Параллельно ставились опыты с гуминовым препаратом аналога, т.е. вначале были посеяны семена житняка, после чего производилась обработка жидким препаратом гуминовых кислот в количестве 1 мл, разбавленного до 100 мл дистиллированной водой. Результаты представлены в таблице 6.
В таблице 7 представлено содержание нефтепродуктов в вегетационных сосудах до очистки и после очистки при использовании биопрепарата, полученного заявленным способом.
Как видно, уже через месяц количество нефтепродуктов с препаратом, полученным предлагаемым способом, составило почти в 70 раз меньше.
Испытания показали, что оптимальные результаты были получены с использованием биопрепарата, полученного по предлагаемому способу. Через 20 суток высота растений в составила 48,7 см. С применением препарата, полученного по известному способу, высота растений составила лишь 20 см. Биопрепарат, полученный заявляемым способом, оказывает стимулирующее влияние и на развитие азотобактера - показателя на плодородие. Количество азотобактера возросло за 20 суток в 10 раз по сравнению с содержанием в почвогрунтах с использованием препарата гуминовых кислот по известному способу.
Таким образом, повышенное содержание карбоновых, гуминовых, аминокислот являются хорошими стимуляторами роста растений и сапрофитной микрофлоры, полисахариды принимают участие в оструктуривании почвогрунтов, что способствует повышению плодородия почвы.
Следовательно, технология получения препарата, заявленным способом, обеспечивает при минимальных затратах получение содержания гуминовых, карбоновых, аминокислот, полисахаридов в большем количестве, чем аналог, а также биомассы штаммов микроорганизмов, превосходящей по количеству биомассу аналога. При этом скорость получения препарата в 2-3 раза быстрее по сравнению с аналогом, в котором препарат получен за 10-12 суток. Кроме того, сухой биопрепарат, полученный заявленным способом, сохраняет свои полезные свойства в течение одного года, а известный - жидкий только один месяц.
Предлагаемый препарат можно использовать при рекультивации нарушенных земель в нефтяной, угольной, железорудной и золотодобывающей промышленности, а также для повышения плодородия малопродуктивных земель и восстановления плодородия футбольных газонов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ БИОРЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ПОЧВОГРУНТОВ | 2012 |
|
RU2499636C1 |
Способ ремедиации загрязненных земель | 2018 |
|
RU2688282C1 |
Способ очистки почвы от загрязнений нефтепродуктами | 2016 |
|
RU2630246C1 |
МИКРОБНЫЙ ПРЕПАРАТ ДЛЯ БИОРЕМЕДИАЦИИ ПОЧВЫ, ЗАГРЯЗНЕННОЙ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ | 2019 |
|
RU2705290C1 |
БИОСОРБЕНТ ДЛЯ ЛИКВИДАЦИИ НЕФТИ С ПОВЕРХНОСТИ ВОДОЕМОВ | 2013 |
|
RU2529771C1 |
СПОСОБ БИОЛОГИЧЕСКОЙ РЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ПОЧВ | 2005 |
|
RU2290270C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД | 2011 |
|
RU2490216C2 |
СПОСОБ РЕКУЛЬТИВАЦИИ НАРУШЕННЫХ ПРИ ДОБЫЧЕ УГЛЯ ЗЕМЕЛЬ | 1994 |
|
RU2072756C1 |
Способ рекультивации нарушенных земель | 2016 |
|
RU2630237C1 |
СПОСОБ РЕКУЛЬТИВАЦИИ ТОКСИЧНЫХ ЗЕМЕЛЬ, НАРУШЕННЫХ ПРИ ДОБЫЧЕ УГЛЯ | 1999 |
|
RU2181933C2 |
Изобретение относится к биотехнологии, в частности к микробиологическим способам очистки окружающей среды. Готовят смесь из жидких бактериальных культур, в качестве которых берут штаммы Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12 в соотношении соответственно 3:1,5:0,5-3:2:1. Осуществляют обработку отходов обогащения бурого угля путем добавления к ним полученной жидкой смеси штаммов с последующим перемешиванием и высушиванием приготовленной смеси в течение не менее 2,5 суток при комнатной температуре, при этом отходы обогащения бурого угля и предварительно подготовленную смесь штаммов берут соответственно в соотношении, мас.%: 40-50:50-60. Изобретение позволяет повысить в биопрепарате содержание гуминовых, карбоновых, аминокислот и полисахаридов при минимальных затратах и сроков его изготовления. 7 табл., 7 пр.
Способ получения биопрепарата для очистки и восстановления плодородия почвогрунтов, загрязненных нефтепродуктами, на основе наполнителя и бактериальных культур, отличающийся тем, что готовят смесь из жидких бактериальных культур, в качестве которых берут штаммы Pseudomonas fluorescens ВКГ RCAM00538 с титром 10-13, КОА-4 Pseudomonas fluorescens ND-610 ВНИИСХМ с титром 10-10, Azotobacter chroococcum АИН RCAM00539 с титром 10-12 в соотношении соответственно 3:1,5:0,5-3:2:1, и осуществляют обработку отходов обогащения бурого угля путем добавления к ним полученной жидкой смеси штаммов с последующим перемешиванием и высушиванием приготовленной смеси в течение не менее 2,5 суток при комнатной температуре, при этом отходы обогащения бурого угля и предварительно подготовленную смесь штаммов берут соответственно в соотношении, мас.%: 40-50:50-60.
СПОСОБ БИОЛОГИЧЕСКОЙ РЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ПОЧВ | 2005 |
|
RU2290270C1 |
СПОСОБ БИОЛОГИЧЕСКОЙ РЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ПОЧВ | 1999 |
|
RU2176164C2 |
СПОСОБ ОЧИСТКИ ПОЧВЫ ОТ ЗАГРЯЗНЕНИЙ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ | 2001 |
|
RU2191643C1 |
CN 101603018 A, 16.12.2009 | |||
. |
Авторы
Даты
2014-09-27—Публикация
2013-01-30—Подача