УСТРОЙСТВО ДЛЯ ПРИЕМА АНАЛОГОВОГО СИГНАЛА БАЗОВОЙ ПОЛОСЫ Российский патент 2014 года по МПК H04B1/18 

Описание патента на изобретение RU2529874C2

Область техники, к которой относится изобретение

В целом, настоящее изобретение относится к информационному терминалу, который осуществляет связь с использованием диэлектрика, более конкретно к приемному устройству для обработки аналоговых сигналов базовой полосы.

Предшествующий уровень техники

Связь при помощи электрического поля может передавать данные с использованием в качестве среды передачи данных диэлектрика, такого как воздух, вода и человеческое тело, и она может обеспечивать пользователям интуитивный механизм и высокую степень безопасности в связи с тем, что данные передаются после интуитивного выбора пользователями терминальных устройств.

Фиг.1 иллюстрирует структуру радиочастотного (RF) приемного устройства, используемого в обычной RF системе связи.

Для приема RF сигналов RF приемное устройство должно включать в себя компоненты, связанные с сигналами RF несущей, такие как гетеродин (LO), квадратурный смеситель и система фазовой автоподстройки частоты (PLL). RF приемное устройство должно разделять принятый RF сигнал на синфазный сигнал и квадратурный сигнал и преобразовывать аналоговый сигнал в цифровой сигнал.

Фиг.2 иллюстрирует структуру обычного приемного устройства широкополосных импульсных сигналов.

Иллюстрированное приемное устройство широкополосных импульсных сигналов сконфигурировано для осуществления связи при помощи электрического поля исключительно при помощи аналоговых сигналов базовой полосы без использования RF демодуляции.

Для восстановления слабого широкополосного импульсного сигнала, который выводится из канала связи, который использует в качестве среды передачи данных человеческое тело, в цифровой сигнал приемное устройство широкополосных импульсных сигналов требует согласования 50 Ом импеданса, усиления широкополосных сигналов и блока запуска симметричного порога.

Фиг.3 иллюстрирует структуру устройства для приема дифференциального аналогового сигнала базовой полосы, модулированного посредством амплитудной манипуляции (ASK) в обычной системе связи при помощи электрического поля.

В этом приемном устройстве используется два электрода для приема дифференциального сигнала. Для ASK демодуляции в приемном устройстве используется дифференциальный усилитель и полосовой фильтр (BPF), который пропускает только сигнал полосы несущей частоты, а затем усиливает принятый сигнал на коэффициент усиления с использованием схемы запоминания пиковых значений. После этого приемное устройство удаляет оставшийся сигнал несущей при помощи фильтра низких частот (LPF), а затем восстанавливает сигнал удаленной несущей в цифровой сигнал с использованием компаратора.

Однако для приемного устройства RF полосы высоких частот на фиг.1 требуются компоненты (LO, PLL и квадратурные смесители) для обработки сигнала RF несущей и компоненты (пара усилителей с переменным усилением (VGA), LPF и аналогово-цифровых преобразователей (ADC)) для обработки как синфазного сигнала, так и квадратурного сигнала, вызывая увеличение энергопотребления и занимаемого места. Если используется структура прямого преобразования, то могут возникать проблемы рассогласования для LO, DC смещения или I/Q (синфазного/квадратурного) сигналов.

В предложенной системе связи при помощи электрического поля для использования аналоговой схемы передачи базовой полосы, как показано на фиг.2, для решения вышеупомянутых проблем, возникающих при использовании RF демодуляции, усилитель, ширина полосы которого составляет 100 МГц или более, должен принимать широкополосные импульсные сигналы. Эта система связи уязвима для интерференционных шумов, поступающих из внеполосных сигналов, поскольку она не включает в себя фильтр. Кроме того, поскольку система связи требует широкую полосу частот, составляющую 100 МГц или более, она может быть затронута даже сигналом RFID (радиочастотной идентификации), таким как сигнал смарт-карты с частотой 13,56 МГц, который может поступать из синфазных сигналов, или FM радиосигналом с частотой приблизительно от 88 МГц до 108 МГц, что вызывает ухудшение функциональных характеристик.

Приемная структура из фиг.3 сконфигурирована для приема аналоговых сигналов базовой полосы, модулированных только посредством ASK, и имеет два приемных электрода, увеличивающих сложность сборки.

Техническая проблема

Аспект иллюстративного варианта осуществления настоящего изобретения должен обеспечивать приемное устройство, способное принимать аналоговые сигналы, модулированные посредством других различных схем модуляции базовой полосы для выполнения передачи данных между информационными терминалами с использованием диэлектрика.

Другой аспект иллюстративного варианта осуществления настоящего изобретения должен обеспечивать приемное устройство, имеющее большой входной динамический диапазон и превосходную чувствительность приема для выполнения передачи данных между информационными терминалами с использованием диэлектрика.

Техническое решение

В соответствии с аспектом иллюстративных вариантов осуществления настоящего изобретения предоставлено устройство для приема аналогового сигнала базовой полосы. Устройство включает в себя электрод для приема сигнала электрического поля, индуцируемого в диэлектрике; первое устройство настройки коэффициента усиления для настройки коэффициента усиления посредством усиления принятого сигнала; фильтр выбора канала для выбора только сигнала, соответствующего ширине полосы приемного канала, из сигнала с настроенным коэффициентом усиления; второе устройство настройки коэффициента усиления для настройки коэффициента усиления посредством усиления выбранного сигнала; компаратор для преобразования сигнала с выхода второго устройства настройки коэффициента усиления в цифровой сигнал; устройство свехдискретизации для сверхдискретизации цифрового сигнала на частоте выше, чем частота приемного канала; демодулятор для демодуляции сигнала, подвергнутого сверхдискретизации; и тактовый генератор для подачи необходимых тактовых сигналов на устройство сверхдискретизации и на демодулятор.

Полезные эффекты

Как было описано выше, если устройство приема аналогового сигнала базовой полосы в соответствии с иллюстративным вариантом осуществления настоящего изобретения используется в среде связи при помощи электрического поля, то может быть обеспечен большой входной динамический диапазон, и чувствительность приема может быть улучшена, что позволяет реализовать различные сценарии применения не только для контактной среды, но также и для бесконтактной среды. Кроме того, приемное устройство может принимать аналоговые сигналы, модулированные посредством различных других схем модуляции сигналов базовой полосы, вследствие его переменной ширины полосы, тем самым улучшая свободу выбора схемы модуляции модема.

Краткое описание чертежей

Фиг.1 иллюстрирует структуру обычного RF приемного устройства.

Фиг.2 иллюстрирует структуру обычного приемного устройства широкополосных импульсных сигналов.

Фиг.3 иллюстрирует структуру обычного приемного устройства дифференциальных сигналов ASK.

Фиг.4 иллюстрирует структуру приемного устройства аналоговых сигналов базовой полосы в соответствии с предпочтительным вариантом осуществления настоящего изобретения.

Фиг.5 иллюстрирует влияние шумов переключения, вводимых в устройство приема аналогового сигнала базовой полосы в соответствии с предпочтительным вариантом осуществления настоящего изобретения.

Фиг.6A-6C иллюстрируют структуры приемных устройств аналоговых сигналов базовой полосы в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения; и

фиг.7 иллюстрирует структуру приемного устройства аналогового сигнала базовой полосы в соответствии с другим дополнительным предпочтительным вариантом осуществления настоящего изобретения.

Наилучший режим выполнения изобретения

Иллюстративные варианты осуществления настоящего изобретения подробно описаны ниже со ссылкой на сопроводительные чертежи. На всех чертежах одинаковые ссылочные номера на чертежах будут пониматься как относящиеся к одинаковым элементам, признакам и структурам. В следующем описании конкретные детали, такие как подробная конфигурация и компоненты, предоставлены только для помощи в полном понимании иллюстративных вариантов осуществления настоящего изобретения. Следовательно, специалистам в данной области техники должно быть очевидно, что различные изменения и модификации описанных в настоящем документе вариантов осуществления могут быть выполнены без отступления от объема и сущности изобретения. Кроме того, описания широкоизвестных функций и конструкций для ясности и краткости опущены.

Фиг.4 иллюстрирует структуру приемного устройства аналогового сигнала базовой полосы в соответствии с предпочтительным вариантом осуществления настоящего изобретения.

Электрод 41 обеспечен для приема сигнала электрического поля, индуцированного в диэлектрике. Малошумящий усилитель (LNA) 42, обеспеченный для усиления с низким уровнем шума сигнала, принятого из электрода 41, является первым устройством настройки коэффициента усиления для настройки коэффициента усиления посредством усиления принятого сигнала. Фильтр 43 выбора канала обеспечен для выбора только сигнала, соответствующего ширине полосы приемного канала, из сигнала с настроенным коэффициентом усиления. В то же самое время интерференционные шумы могут быть устранены из усиленного сигнала. Усилитель 44 с программируемым коэффициентом усиления (PGA) является вторым устройством настройки коэффициента усиления для настройки коэффициента усиления посредством усиления сигнала, выбранного посредством фильтра 43 выбора канала, и он обеспечен для усиления выбранного сигнала до сигнала, достаточно большого, чтобы устойчиво преобразовать его в цифровой сигнал. Компаратор 45 преобразовывает выходной сигнал из PGA 44 в цифровой сигнал. Устройство 46 сверхдискретизации обеспечено для сверхдискретизации цифрового сигнала на частоте fclock более высокой, чем частота fsignal приемного канала. Модем 47 является демодулятором для демодуляции сигнала, подвергнутого сверхдискретизации. Тактовый генератор 48 обеспечивает необходимые тактовые сигналы на устройство 46 сверхдискретизации и на модем 47.

Причина того, почему устройство 46 сверхдискретизации осуществляет сверхдискретизацию цифрового сигнала на частоте fclock более высокой, чем частота приемного канала fsignal, состоит в следующем.

Во-первых, причина состоит в повышении отношения сигнал-шум (SNR) в модеме 47, потому что возможно обнаружение энергии 1 бита просто с использованием однобитового компаратора вместо использования ADC, энергопотребление которых является большим.

Во-вторых, причина состоит в выполнении синхронизации данных посредством комбинирования множества значений сверхдискретизации в модеме 47, поскольку проблема времени вхождения в синхронизм может возникнуть даже при использовании для синхронизации данных технологии восстановления тактового сигнала и данных (CDR).

В-третьих, причина состоит в улучшении чувствительности приема посредством минимизации влияния ввода шумов переключения.

Фиг.5 иллюстрирует влияние ввода шумов переключения в приемном устройстве аналоговых сигналов базовой полосы в соответствии с предпочтительным вариантом осуществления настоящего изобретения.

Шумы переключения возникают вследствие цифрового тактового сигнала, генерируемого тактовым генератором 48, и шумы переключения вводятся через проводник питания или заземления или через подложку микросхемы, воздействуя на аналоговые схемы (в особенности LNA 42 и PGA 44).

Что касается частотного спектра входного сигнала на компаратор 45, который является выходным каскадом аналоговой схемы, появляются сигналы приемного канала, которые имеют конкретную полосу частот вокруг fsignal, и поскольку тактовый сигнал также основан на цифровом сигнале базовой полосы, то появляется сигнал частоты fclock и сигнал частоты 2fclock, который является второй гармонической составляющей. Если тактовая частота меньше суммы частоты сигнала и половины ширины полосы заграждения канала, то есть если она имеет относительное выражение, как приведено ниже в уравнении (1), то частотный компонент тактового сигнала вводится в полосу канала приема как синфазный интерференционный шум.

Причина, по которой требуется условие ширины полосы не для полосы пропускания, а для полосы заграждения, состоит в том, чтобы в достаточной степени уменьшить интерференционный шум, принимая во внимание запас помехоустойчивости, в связи с тем, что даже если интерференционный шум находится за пределами полосы, его уровень незначительно уменьшается в полосе заграждения. Следовательно, если уровень принятого сигнала выше, чем уровень частотного компонента тактового сигнала, включающего в себя гармонический частотный компонент, то вводимая помеха не является проблемой. Однако в среде канала, где потери на трассе распространения велики, поскольку уровень принимаемого сигнала мал, чувствительность приема может уменьшиться вследствие компонента интерференционного шума. Кроме того, поскольку вводимый шум переключения возникает даже из-за тактовых частот fmodem, fprocessor и fCODEC, используемых не только в тактовом генераторе 48, но также и в модеме 47 или цифровом процессоре 49 (например, процессоре и кодеке), все тактовые частоты, используемые в этих компонентах, также должны удовлетворять приведенному ниже уравнению (2) для увеличения чувствительности приема устройства приема аналогового сигнала базовой полосы.

Фиг.6A к 6C иллюстрируют структуры устройств приема аналоговых сигналов базовой полосы в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения. Другие компоненты, не показанные на этих чертежах, являются такими же или подобными компонентам на фиг.4.

Фиг.6A иллюстрирует структуру, в которой фильтр выбора канала расположен в первом каскаде, и эта структура усиливает принятый сигнал после прохождения только в желательной полосе канала. Этот порядок может уменьшить ширину полосы LNA и PGA, и поскольку шум был удален в первом каскаде, их линейность может быть ниже, и принятый сигнал может быть усилен в достаточной степени, так что компаратор мог устойчиво восстановить его в цифровой сигнал. Фильтр выбора канала является аналоговым фильтром и обычно конфигурируется с активным фильтром, поскольку он работает на частоте базовой полосы. Однако поскольку входной импеданс должен быть высоким, чтобы лучше обнаруживать принятый сигнал, шум, возникающий при импедансе, увеличивается, так что шум может усиливаться посредством общего коэффициента усиления напряжения LNA и PGA. Кроме того, все шумы, возникающие в LNA, также усиливаются посредством коэффициента усиления напряжения PGA, снижая полную характеристику SNR.

Фиг.6B иллюстрирует структуру, в которой фильтр выбора канала может управляться не аналоговым способом, а цифровым способом. Этот порядок может уменьшить энергопотребление и занимаемое место, поскольку характеристики фильтра могут легко изменяться цифровым способом, но это требует ADC, имеющий высокую линейность и превосходные шумовые характеристики. Кроме того, функция AGC также должна быть добавлена перед ADC для предотвращения насыщения уровня принимаемого сигнала.

Фиг.6C иллюстрирует структуру, в которой принятый сигнал фильтруется посредством фильтра выбора канала после того, как он в достаточной степени усилен посредством LNA и PGA. Этот порядок является превосходным по шумовым характеристикам и зачастую используется даже в ультразвуковых приемных устройствах в связи с тем, что внеполосные шумы, возникающие в LNA и PGA, могут быть удалены посредством фильтра. Однако поскольку не только синфазный сигнал, но и внеполосный сигнал с интерференционным шумом усиливаются посредством общего коэффициента усиления напряжения LNA и PGA, они могут усиливаться только в пределах диапазона, в котором фильтр выбора канала не имеет проблемы линейности, ограничивая входной динамический диапазон. Если коэффициент усиления напряжения уменьшается для расширения линейного диапазона, то компаратор может не получить усиления напряжения, требуемого для получения минимального уровня принимаемого сигнала, используемого для устойчивого восстановления его в цифровой сигнал, обуславливая меньшее улучшение чувствительности приема.

Что касается полных шумов, вычисляемых в зависимости от порядков расположения компонентов, фиг.6C показывает наилучшие шумовые характеристики, а фиг.4 показывает следующие по качеству шумовые характеристики. Однако фиг.6C имеет ограничение по входному динамическому диапазону и, следовательно, меньшее улучшение чувствительности приема. В частности, среда канала связи при помощи электрического поля требует широкого входного динамического диапазона, поскольку различие в потерях на трассе распространения между средой контактного электрода и средой бесконтактного электрода составляет 60 дБ или более, и поскольку чувствительность приема, требуемая в бесконтактной среде, также составляет приблизительно несколько десятков мВ, коэффициент усиления напряжения также должен быть высоким для устойчивого восстановления компаратором принятого сигнала в цифровой сигнал. Следовательно, порядок расположения на фиг.4 может являться наиболее подходящим в среде канала связи при помощи электрического поля.

Для сравнения полные шумы, вычисляемые в зависимости от различных порядков расположения, представлены ниже в уравнениях (3)-(6).

В случае фиг.4:

В случае фиг.6A:

В случае фиг.6B:

В случае фиг.6C:

где GLNA: коэффициент усиления напряжения LNA,

NPGA: коэффициент усиления напряжения PGA,

NLNA: шум, возникающий в LNA,

PPGA: шум, возникающий в PGA,

NFilter: шум, возникающий в фильтре выбора канала, и

α: отношение ширины полосы пропускания фильтра выбора канала к ширине полосы LNA и PGA. Считается, что шум фильтра выбора канала меньше шума LNA (Nfilter<NLNA).

В частности, взаимосвязь между приемным устройством по фиг.4 и приемным устройством по фиг.6C в контексте входного динамического диапазона и чувствительности приема выглядит следующим образом.

В предположении, что

PN: мощность тепловых шумов,

B: ширина полосы канала,

NF: шумовой коэффициент приемника,

PNo: спектральная плотность мощности тепловых шумов,

PTH: входная пороговая мощность компаратора,

SNRREQ: SNR, требуемое для модема,

(PO)MAX: максимальная выходная мощность в режиме насыщения, и

(PI)MIN: минимальная входная мощность,

тогда мощность тепловых шумов приемного устройства такова, как показано в приведенном ниже уравнении (7).

Для устойчивого восстановления компаратором принятого сигнала в цифровой сигнал должно удовлетворяться условие уравнения (8).

Чувствительность приема приемного устройства определятся уравнением (9).

Следовательно, посредством уравнения (8) минимальный диапазон чувствительности приема определяется уравнением (10).

Динамический диапазон DR|4 приемного устройства на фиг.4 определяется согласно уравнению (11) в пределах диапазона, в котором не происходит насыщения в фильтре выбора канала.

Подобным образом динамический диапазон DR|6c приемного устройства, изображенного на фиг.6C, определяется согласно уравнению (12).

Из уравнений (11) и (12) можно отметить, что для одной и той же чувствительности приема динамический диапазон приемного устройства на фиг.4 является шире на GPGA, чем динамический диапазон приемного устройства на фиг.6C. Хотя коэффициенты усиления напряжения LNA и PGA могут быть уменьшены для расширения динамического диапазона приемного устройства на фиг.6C, из уравнения (10) можно отметить, что если коэффициенты усиления напряжения уменьшаются, то чувствительность приема или минимальный принятый уровень входного сигнала должен быть увеличен. В этом отношении приемное устройство на фиг.4 имеет структуру, способную к расширению входного динамического диапазона и к улучшению чувствительности приема.

Фиг.7 иллюстрирует структуру устройства приема аналогового сигнала базовой полосы в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения.

Сигнал, принятый через диэлектрик посредством электрода 70, не имеет DC потенциала, так что он должен внутренним образом подвергаться DC смещению. Следовательно, DC путь между передающим устройством и диэлектриком и приемным устройством удаляется, и приемное устройство конфигурируется для приема принимаемого сигнала посредством АС соединения для устранения шума в низкочастотном диапазоне, включающем в себя 60 Гц.

LNA 90 сконфигурирован для настройки его приемного импеданса для получения рабочих характеристик, оптимизированных для среды канала. Кроме того, LNA 90 имеет дифференциальную структуру входа (71 и 72) для устранения синфазного шума, генерируемого извне, и соединяет один дифференциальный входной вывод 72 с заземлением GND посредством АС соединения, принимая во внимание влияние пути возврата через землю (возврата через GND), то есть соединения, возникающего между заземлением стороны Rx и заземлением стороны Tx.

Поскольку потери на трассе распространения изменяются в зависимости от среды канала, коэффициенты усиления напряжения LNA 90 и PGA 79 могут быть настроены посредством модема (не показан). Модем предоставляет сигнал GPGA для управления усилением PGA и сигнал GLNA для управления усилением LNA.

Блок фильтра выбора канала включает в себя два BPF 76 и 77, и переключатели 75 и 78 для предоставления возможности выбора принятого сигнала в соответствии с каждой частотой канала приема. Для BPF 76 и 77 их ширина полосы пропускания может быть настроена в зависимости от скорости передачи данных или схемы модуляции и среды канала. Модель обеспечивает сигнал Sel для выбора BPF.

Для компаратора 80 его гистерезис управляется в соответствии с сигналом Hys управления гистерезисом, предоставляемым из модема.

Хотя изобретение изображено и описано со ссылкой на определенные иллюстративные варианты его осуществления, специалистам в данной области техники должно быть понятно, что могут быть выполнены различные изменения по форме и в деталях без отступления от сущности и объема изобретения, как определено посредством приложенной формулы изобретения и ее эквивалентов.

Похожие патенты RU2529874C2

название год авторы номер документа
СПОСОБ И СИСТЕМА ДЛЯ КОРРЕКЦИИ DC И AGC 2009
  • Кадоус Тамер А.
  • Яо Айвен
  • Ван Цзибин
  • Цзин Вэйхун
  • Ли Юн
RU2458457C2
АКТИВНАЯ МАГНИТНАЯ АНТЕННА С ФЕРРИТОВЫМ СЕРДЕЧНИКОМ 2008
  • Крылов Константин Станиславович
  • Ли Жаехо
  • Ким Янг Жин
  • Ким Сеунгхван
  • Ли Санг-Ха
RU2395876C2
СПОСОБ И УЗЕЛ В РАДИОПЕРЕДАЧАХ TDD 2014
  • Су Юпин
  • Ли Мин
RU2663377C2
ИНТЕГРАЛЬНОЕ ИМПУЛЬСНО-КОДОВОЕ МОДУЛИРУЮЩЕЕ ШИФРИРУЮЩЕЕ-ДЕШИФРИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ КОММУТАЦИОННОЙ СИСТЕМЫ (ВАРИАНТЫ) 1992
  • Ив-Ван Ванг
  • Хю-Кюонг Ли
  • Йи-Сунг Бае
  • Банг-Вон Ли
RU2123766C1
АРХИТЕКТУРА ПРИЕМНИКА С ПРЯМЫМ ПРЕОБРАЗОВАНИЕМ 2002
  • Ли Тао
  • Хоулстейн Кристиан
  • Канг Иниуп
  • Уолкер Бретт К.
  • Петерзелл Пол Э.
  • Чалла Рагху
  • Северсон Мэттью Л.
  • Рагхупати Арун
  • Сих Гилберт К.
RU2379825C2
ДВУХРЕЖИМНАЯ СИСТЕМА СВЯЗИ С ЧАСТОТНОЙ МОДУЛЯЦИЕЙ И С МНОЖЕСТВЕННЫМ ДОСТУПОМ С КОДОВЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ 1995
  • Питер Дж.Блэк
  • Натаниель Б.Вильсон
RU2142205C1
ЛИНЕАРИЗОВАННАЯ ЦИФРОВАЯ АВТОМАТИЧЕСКАЯ РЕГУЛИРОВКА УСИЛЕНИЯ 1996
  • Натаниэль Б. Вильсон
RU2158474C2
АРХИТЕКТУРА ПРИЕМНИКА С ПРЯМЫМ ПРЕОБРАЗОВАНИЕМ 2008
  • Ли Тао
  • Хоулстейн Кристиан
  • Канг Иниуп
  • Уолкер Бретт К.
  • Питерзелл Пол Э.
  • Чалла Рагху
  • Северсон Мэттью Л.
  • Рагхупати Арун
  • Сих Гилберт К.
RU2496229C2
АРХИТЕКТУРА ПРИЕМНИКА С ПРЯМЫМ ПРЕОБРАЗОВАНИЕМ 2013
  • Ли Тао
  • Хоулстейн Кристиан
  • Канг Иниуп
  • Уолкер Бретт К.
  • Питерзелл Пол Э.
  • Чалла Рагху
  • Северсон Мэттью Л.
  • Рагхупати Арун
  • Сих Гилберт К.
RU2540263C2
СПОСОБ И УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОЙ РЕГУЛИРОВКИ УСИЛЕНИЯ В ЦИФРОВОМ РАДИОПРИЕМНИКЕ 1995
  • Пол И. Питерзелл
  • Натаниель Б. Вилсон
  • Питер Дж. Блэк
RU2163416C2

Иллюстрации к изобретению RU 2 529 874 C2

Реферат патента 2014 года УСТРОЙСТВО ДЛЯ ПРИЕМА АНАЛОГОВОГО СИГНАЛА БАЗОВОЙ ПОЛОСЫ

Изобретение относится к технике связи и может использоваться в системах беспроводной связи для обработки аналогового сигнала базовой полосы в информационном терминале, которое осуществляет связь с использованием диэлектрика.Технический результат состоит в повышении помехоустойчивости приема сигналов. Для этого приемное устройство включает в себя электрод для приема сигнала электрического поля, индуцированного в диэлектрике; первое устройство настройки коэффициента усиления; фильтр выбора канала; второе устройство настройки коэффициента усиления; компаратор для преобразования сигнала с выхода второго устройства настройки коэффициента усиления в цифровой сигнал; устройство сверхдискретизации для сверхдискретизации цифрового сигнала на частоте fclock выше, чем частота fsigna канала приема; демодулятор сигнала, подвергнутого сверхдискретизации; и тактовый генератор для предоставления необходимых тактовых сигналов на устройство сверхдискретизации и на демодулятор. 4 н. и 7 з.п. ф-лы,7 ил.

Формула изобретения RU 2 529 874 C2

1. Устройство для приема аналогового сигнала базовой полосы, содержащее:
электрод для приема сигнала электрического поля;
первое устройство настройки коэффициента усиления для настройки коэффициента усиления посредством усиления принятого сигнала электрического поля;
фильтр выбора канала для выбора сигнала, соответствующего ширине полосы канала приема из сигнала с настроенным коэффициентом усиления;
второе устройство настройки коэффициента усиления для настройки коэффициента усиления посредством усиления выбранного сигнала;
компаратор для преобразования сигнала с выхода второго устройства настройки коэффициента усиления в цифровой сигнал;
устройство сверхдискретизации для сверхдискретизации цифрового сигнала на частоте выше, чем частота канала приема;
демодулятор для демодуляции сигнала, подвергнутого сверхдискретизации; и
тактовый генератор для предоставления тактового сигнала на устройство сверхдискретизации и на демодулятор.

2. Устройство по п.1, в котором первое устройство настройки коэффициента усиления является малошумящим усилителем.

3. Устройство по п.1, в котором второе устройство настройки коэффициента усиления является усилителем с программируемым коэффициентом усиления.

4. Устройство по п.1, в котором фильтр выбора канала включает в себя множество полосовых фильтров и переключателей для выбора принимаемого сигнала от одного из множества частот канала приема; и
в котором множество переключателей переключаются для выбора полосового фильтра для выбранной частоты канала приема.

5. Устройство по п.1, в котором фильтр выбора канала выбирает только сигнал ширины полосы канала приема.

6. Устройство для приема аналогового сигнала базовой полосы, содержащее:
электрод для приема сигнала электрического поля;
фильтр выбора канала для выбора сигнала, соответствующего ширине полосы канала приема из принимаемого сигнала электрического поля;
малошумящий усилитель для настройки коэффициента усиления посредством усиления выбранного сигнала;
усилитель с программируемым коэффициентом усиления для настройки коэффициента усиления посредством усиления сигнала с настроенным коэффициентом усиления;
компаратор для преобразования сигнала с выхода усилителя с программируемым коэффициентом усиления в цифровой сигнал;
устройство сверхдискретизации для сверхдискретизации цифрового сигнала на частоте выше, чем частота канала приема;
демодулятор для демодуляции сигнала, подвергнутого сверхдискретизации; и
тактовый генератор для обеспечения тактового сигнала на устройство сверхдискретизации и на демодулятор.

7. Устройство по п.6, в котором фильтр выбора канала выбирает только сигнал ширины полосы канала приема.

8. Устройство для приема аналогового сигнала базовой полосы, содержащее:
электрод для приема сигнала электрического поля;
малошумящий усилитель для настройки коэффициента усиления посредством усиления принятого сигнала;
усилитель с программируемым коэффициентом усиления для настройки коэффициента усиления посредством усиления сигнала с настроенным коэффициентом усиления;
аналого-цифровой преобразователь для преобразования сигнала с выхода усилителя с программируемым коэффициентом усиления в цифровой сигнал;
фильтр выбора канала для выбора сигнала, соответствующего ширине полосы канала приема, из цифрового сигнала;
демодулятор для демодуляции выбранного сигнала; и
тактовый генератор для предоставления тактового сигнала на демодулятор.

9. Устройство по п.8, в котором фильтр выбора канала выбирает только сигнал ширины полосы канала приема.

10. Устройство для приема аналогового сигнала базовой полосы, содержащее:
электрод для приема сигнала электрического поля;
малошумящий усилитель для настройки коэффициента усиления посредством усиления принятого сигнала электрического поля;
усилитель с программируемым коэффициентом усиления для настройки коэффициента усиления посредством усиления сигнала с настроенным коэффициентом усиления;
фильтр выбора канала для выбора сигнала, соответствующего ширине полосы канала приема, из сигнала с выхода усилителя с программируемым коэффициентом усиления;
компаратор для преобразования выбранного сигнала в цифровой сигнал/устройство сверхдискретизации для сверхдискретизации цифрового сигнала на частоте выше, чем частота канала приема;
демодулятор для демодуляции сигнала, подвергнутого сверхдискретизации; и
тактовый генератор для обеспечения необходимого тактового сигнала на демодулятор.

11. Устройство по п.10, в котором фильтр выбора канала выбирает только сигнал ширины полосы канала приема.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529874C2

Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания 1917
  • Латышев И.И.
SU96A1
МОБИЛЬНАЯ СТАНЦИЯ ОПЕРАТИВНОЙ СВЯЗИ 2004
  • Мейчик Евгений Робертович
  • Каверный Александр Владимирович
  • Липатов Александр Анатольевич
  • Кривенков Михаил Викторович
  • Степанов Александр Александрович
  • Рапопорт Владимир Марксович
  • Бойцов Александр Юрьевич
  • Тюрин Иван Александрович
  • Рогожин Александр Викторович
  • Вергелис Николай Иванович
RU2271072C1
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
US5212684 A, 18.05.1993

RU 2 529 874 C2

Авторы

Сонг Сеонг-Дзун

Хванг Санг-Юн

Ким Чул-Дзин

Ли Дзонг-Рим

Чой Хиун-Кук

Ли Сеок-Йонг

Даты

2014-10-10Публикация

2010-05-07Подача