УСТРОЙСТВО ЭЛЕКТРОРАСПЫЛЕНИЯ ХРОМАТОГРАФИЧЕСКИХ ПОТОКОВ АНАЛИЗИРУЕМЫХ РАСТВОРОВ ВЕЩЕСТВ ДЛЯ ИСТОЧНИКОВ ИОНОВ Российский патент 2014 года по МПК G01N30/72 

Описание патента на изобретение RU2530783C2

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике, метаболомике при ионизации исследуемых лабильных веществ методом «электроспрей». Метод «электроспрей» является одним из современных методов «мягкой» ионизации, который позволяет переводить в газовую фазу ионы исследуемых лабильных веществ, например, такие как пепетиды, белки, полинуклеотиды, лекарства, непосредственно из раствора. Однако у существующих устройств электрораспыления хроматографических потоков анализируемых веществ для источников ионов имеется ряд факторов, ограничивающих работоспособность источников ионов. Невозможность точного согласования потоков подаваемого в область распыления анализируемого раствора в широком диапазоне объемных скоростей (5 мкл/мин - 2000 мкл/мин) и его полного распыления с образованием ионов анализируемых веществ без наличия неиспарившихся микрокапель, поступающих в парогазовом потоке в источник ионов, приводят, как правило, к засорению и закупориванию входных диафрагм и транспортирующих систем из области атмосферного давления в высоковакуумную область анализатора ионов, зарядке их элементов, увеличению шумов и появлению ложных сигналов в регистрируемых спектрах.

Известны устройства электрораспыления анализируемых потоков растворов веществ [1, 2], где устройство электрораспыления, система транспортировки ионов источника и вход в анализатор ионов располагаются на одной оси. В этом случае в анализатор ионов попадают крупные капли, образующиеся из жидкости, скапливающейся на внешней стороне капилляра, с торца которого происходит эмиссия заряженных микрокапель, что связано с несогласованностью потоков поступающего и распыляемого раствора. Попадание крупных капель в транспортирующую систему источника ионов и в анализатор усложняет функционирование прибора и проведение анализа. Также известны устройства ортогонального электрораспыления анализируемого раствора относительно оси ввода заряженных частиц в систему транспортировки анализатора [3]. Такая ориентировка устройства электрораспыления позволяет избежать засорения или закупоривания входной диафрагмы системы транспортировки заряженных частиц в анализатор, так как при использовании такой геометрии расположения узла электрораспыления раствора большие капли по инерции, преимущественно пролетают мимо входа в анализатор.

Ближайшим из известных, выбранного в качестве прототипа, является устройство ортогонального электрораспыления [4]. Это устройство по сравнению с [1, 2] дополнено коаксиальным капилляром, по которому в зону существования факела распыленного раствора подается нагретый газ-испаритель. Нагретый газ испаритель предназначен для более эффективного испарения образовавшихся микрокапель и, соответственно, увеличения тока анализируемых ионов из раствора. Такое сочетание электрораспыления и стимулированного испарения микрокапель не влияет на существование больших капель, образовавшихся в результате нестационарности процесса распыления. В свою очередь, нестационарность процесса электрораспыления анализируемого раствора, в основном, связана с невозможностью согласовать поток распыляемого раствора с потоком раствора, поступающего в область распыления - мениск на торце металлического капилляра. Электрораспыление существенно зависит от проводимости распыляемого раствора - состава растворителя и концентрации анализируемого вещества, кроме того, все эти параметры влияют на величину поверхностного натяжения, а соответственно и на режим электрораспыления. Излишек раствора смачивает внешнюю сторону капилляра, где начинает накапливаться большая капля до тех пор, пока электрическое поле не преодолеет силу смачиваемости раствора и не оторвет ее от капилляра. Размер такой капли составляет 100-1000 мкм, что много больше размера капель (≥1 мкм), из которых удается извлечь ионы вещества. Такие гигантские капли существенно усложняют работу анализатора и приводят к искажению аналитической информации (спектров подвижности или масс-спектров). На фигуре 1 показан спектр ионной подвижности растворителя при использовании общепринятого устройства распыления в электроспрей ионизации с наличием микрокапель. По оси абсцисс - время развертки спектра (0 - 6000 мкс), по оси ординат - величина сигнала в мВ. Существенного увеличения тока анализируемых ионов, поступающих в анализатор, кратного увеличению потока распыленного раствора, не происходит из-за влияния объемного заряда в области распыления и экстракции ионов из микрокапель при нормальных условиях.

Задачей изобретения является устранение условий образования больших капель в области электрораспыления раствора при возможности увеличения потока и устранения шумов в регистрируемых спектрах, обусловленных крупными каплями.

Поставленная задача решается за счет того, что в известном устройстве электрораспыление хроматографических потоков анализируемых растворов веществ для источников ионов, содержащих капилляр, в торце которого расположен мениск распыляемого раствора и коаксиально которому расположен внешний капилляр большего диаметра, входную диафрагму, торец капилляра с мениском распыляемого раствора ориентирован вертикально вверх, напротив торца в горизонтальной плоскости с наклоном расположен плоский противоэлектрод, электрически соединенный с входной диафрагмой системы транспортировки ионов анализатора, а коаксиальный зазор между капиллярами подключен к воздушному откачивающему насосу.

Заявляемое устройство электрораспыления хроматографических потоков анализируемых растворов веществ для источников ионов схематично представлено на фигуре 2. По внутреннему металлическому капилляру (1) подается раствор от жидкостного микронасоса (2). К этому же капилляру прикладывается напряжение от высоковольтного источника питания (3). Торец капилляра (1), с торца которого происходит электрораспыление, ориентирован вертикально вверх. Коаксиально к капилляру (1) расположен внешний диэлектрический капилляр (4) с внутренним диаметром большим внешнего диаметра капилляра (1). Излишки нераспыленного раствора, стекающие по внешней стенке капилляра (1), вместе с лабораторным воздухом откачиваются воздушным насосом (5) через зазор между коаксиальными капиллярами (1) и (4). Напротив торца внутреннего капилляра (1) в горизонтальной плоскости под углом к горизонту вниз расположен плоский противоэлектрод (6), электрически соединенный с входной диафрагмой (7) системы транспортировки ионов анализатора, создающие более симметричное электрическое поле для электрораспыления жидкости.

В целом отвод нераспыленной или сконденсировавшейся жидкости из области распыления и симметрия факела распыления позволяют получить микрокапли раствора в более узком диапазоне размеров (диаметров), что, в свою очередь, позволяет локализовать область экстракции ионов из раствора при нормальных условиях и эффективно транспортировать ионы в анализатор. На фигуре 3 показан спектр ионной подвижности растворителя при использовании предлагаемого устройства распыления в электроспрей ионизации в отсутствии микрокапель. По оси абсцисс - время развертки спектра (0-6000 мкс), по оси ординат - величина сигнала в мВ. На фигуре 4 показан масс-спектр резерпина, полученный с применением описанного устройства электрораспыления.

Источники информации

1. Александров М.Л., Галь Л.Н., Краснов Н.В., Николаев В.И., Павленко В.А., Шкуров В.А. Экстракция ионов из растворов при атмосферном давлении - метод масс-спектрометрического анализа биоорганических веществ.//ДАН, 1984, Т.277, №2. Физическая химия, с.379-383.

2. Tang X., Bruce J.E., Hill H.H. Characterizing electrospray ionization using atmospheric pressure ion mobility spectrometry// Anal.Chem., 2006, v.78, p.7751-7760.

3. Apffel J.A., Werlich M.H., Bertsch J.I., Goodly P.C. Ortogonal ion sampling for electrospray LC/MS. US patent: 5495108, date of patent Feb.27, 1996.

4. www.agilent.com (прототип).

Похожие патенты RU2530783C2

название год авторы номер документа
УСТРОЙСТВО ОБРАЗОВАНИЯ БЕСКАПЕЛЬНОГО ИОННОГО ПОТОКА ПРИ ЭЛЕКТРОРАСПЫЛЕНИИ АНАЛИЗИРУЕМЫХ РАСТВОРОВ В ИСТОЧНИКАХ ИОНОВ С АТМОСФЕРНЫМ ДАВЛЕНИЕМ 2015
  • Краснов Николай Васильевич
  • Краснов Максим Николаевич
RU2608361C2
УСТРОЙСТВО НЕПРЕРЫВНОГО СТАБИЛЬНОГО ЭЛЕКТРОРАСПЫЛЕНИЯ РАСТВОРОВ В ИСТОЧНИКЕ ИОНОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ 2014
  • Краснов Николай Васильевич
  • Мурадымов Марат Зарифович
  • Арсеньев Александр Николаевич
  • Семёнов Сергей Юрьевич
RU2587679C2
УСТРОЙСТВО СТАБИЛЬНОГО ЭЛЕКТРОРАСПЫЛЕНИЯ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ РАСТВОРОВ ВЕЩЕСТВ ДЛЯ ИСТОЧНИКОВ ИОНОВ 2015
  • Краснов Николай Васильевич
  • Мурадымов Марат Зарифович
  • Пашков Олег Валерьевич
RU2608362C2
СПОСОБ ЭЛЕКТРОРАСПЫЛЕНИЯ ХРОМАТОГРАФИЧЕСКИХ ПОТОКОВ АНАЛИЗИРУЕМЫХ РАСТВОРОВ ВЕЩЕСТВ ДЛЯ ИСТОЧНИКОВ ИОНОВ 2011
  • Краснов Николай Васильевич
  • Мурадымов Марат Зарифович
  • Самокиш Владимир Андреевич
RU2530782C2
СПОСОБ ОБРАЗОВАНИЯ БЕСКАПЕЛЬНОГО ИОННОГО ПОТОКА ПРИ ЭЛЕКТРОРАСПЫЛЕНИИ АНАЛИЗИРУЕМЫХ РАСТВОРОВ В ИСТОЧНИКАХ ИОНОВ С АТМОСФЕРНЫМ ДАВЛЕНИЕМ 2015
  • Краснов Николай Васильевич
  • Краснов Максим Николаевич
RU2613429C2
СПОСОБ СТАБИЛЬНОГО ЭЛЕКТРОРАСПЫЛЕНИЯ РАСТВОРОВ В ИСТОЧНИКЕ ИОНОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ 2014
  • Краснов Николай Васильевич
  • Мурадымов Марат Зарифович
RU2608366C2
СПОСОБ НЕПРЕРЫВНОГО СТАБИЛЬНОГО ЭЛЕКТРОРАСПЫЛЕНИЯ РАСТВОРОВ В ИСТОЧНИКЕ ИОНОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ 2014
  • Краснов Николай Васильевич
  • Мурадымов Марат Зарифович
  • Краснов Максим Николаевич
RU2612324C2
Способ предварительной сепарации потока заряженных частиц в источнике ионов с ионизацией при атмосферном давлении 2019
  • Курнин Игорь Васильевич
  • Краснов Николай Васильевич
  • Краснов Максим Николаевич
RU2732075C1
СПОСОБ ПОЛУЧЕНИЯ ПРОТОННЫХ ПУЧКОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ 2020
  • Краснов Николай Васильевич
  • Мурадымов Марат Зарифович
  • Краснов Максим Николаевич
  • Курнин Игорь Васильевич
RU2754826C1
Устройство для нанесения наночастиц оксидов металлов на металлическую поверхность при нормальных условиях 2019
  • Подольская Екатерина Петровна
  • Кельциева Ольга Александровна
  • Краснов Николай Васильевич
  • Мурадымов Марат Зарифович
  • Краснов Максим Николаевич
RU2733530C1

Иллюстрации к изобретению RU 2 530 783 C2

Реферат патента 2014 года УСТРОЙСТВО ЭЛЕКТРОРАСПЫЛЕНИЯ ХРОМАТОГРАФИЧЕСКИХ ПОТОКОВ АНАЛИЗИРУЕМЫХ РАСТВОРОВ ВЕЩЕСТВ ДЛЯ ИСТОЧНИКОВ ИОНОВ

Предлагаемое изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике, метаболомике и медицины, метабономики и посттрансляционной модификации. Устройство электрораспыления хроматографических потоков анализируемых растворов веществ для источников ионов выполнено в виде коаксиально расположенных капилляров, ориентированных вертикально. По внутреннему металлическому капилляру подается раствор, к этому же капилляру прикладывается напряжение от высоковольтного источника питания. С торца этого капилляра происходит электрораспыление вертикально вверх. Коаксиальный внешний капилляр имеет внутренний диаметр больше внешнего диаметра внутреннего капилляра. Излишки не распыленного раствора, стекающие по внешней стенке внутреннего капилляра, вместе с лабораторным воздухом откачиваются воздушным насосом через зазор между коаксиальными капиллярами. Техническим результатом является увеличение потока распыляемого раствора, монодисперсность микрокапель, отсутствие крупных не контролируемых капель, а следовательно, уменьшение шумов в регистрируемом спектре. 4 ил.

Формула изобретения RU 2 530 783 C2

Устройство электрораспыления хроматографических потоков анализируемых растворов веществ для источников ионов, включающее капилляр, в торце которого расположен мениск распыляемого раствора и коаксиально которому расположен внешний капилляр большего диаметра, входную диафрагму, отличающееся тем, что торец капилляра с мениском распыляемого раствора ориентирован вертикально вверх, напротив торца в горизонтальной плоскости с наклоном расположен плоский противоэлектрод, электрически соединенный с входной диафрагмой системы транспортировки ионов анализатора, а коаксиальный зазор между капиллярами подключен к воздушному откачивающему насосу.

Документы, цитированные в отчете о поиске Патент 2014 года RU2530783C2

US 5495108 A 27.02.1996
Аппарат для чистки шахтных вагонеток 1928
  • Голяк К.К.
  • Матченко Л.П.
SU15051A1
US 6690006 B2 10.02.2004
Электромагнитный номератор 1928
  • Годович М.Л.
SU10631A1
Краснов И.А
и др
Аппарат для непрерывной сатурации свекловичного сока 1925
  • Ногачевский М.П.
SU5310A1
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Приспособление для останова мюля Dobson аnd Barlow при отработке съема 1919
  • Масленников А.П.
SU108A1

RU 2 530 783 C2

Авторы

Краснов Николай Васильевич

Мурадымов Марат Зарифович

Самокиш Владимир Андреевич

Даты

2014-10-10Публикация

2012-04-27Подача