СПОСОБ ОБЕСПЕЧЕНИЯ ТЕПЛОВОГО РЕЖИМА ПРИБОРНОГО ОТСЕКА ЛЕТАТЕЛЬНОГО АППАРАТА Российский патент 2014 года по МПК B64C30/00 B64G1/50 

Описание патента на изобретение RU2531210C1

Изобретение относится к авиационной и ракетной технике и может быть использовано для обеспечения теплового режима приборных отсеков сверх- и гиперзвуковых летательных аппаратов (ДА).

Высокие скорости полета гиперзвуковых ЛА сопровождаются интенсивным аэродинамическим нагревом конструкции отсеков, в том числе и приборных. Обеспечение допустимых температурных условий для функционирования аппаратуры производится как защитой конструкции отсека от внешних теплопритоков путем установки на корпус приборного отсека теплоизоляции, так и использованием активных систем охлаждения. При этом актуальной является задача улучшения термостатирования аппаратуры приборных отсеков, а также уменьшения массы системы охлаждения.

Известна система тепловой защиты радиоэлектронной аппаратуры сверхзвукового летательного аппарата (а.с. №1840522, 2007, B64G 9/00), содержащая резервуар с теплоносителем, сообщающийся через регулирующий клапан с испарителем, находящимся в тепловом контакте с охлаждаемой аппаратурой. Испаритель через ряд элементов системы сообщается с забортным пространством. Способ обеспечения теплового режима аппаратуры, реализуемый в известной системе тепловой защиты, заключается в охлаждении аппаратуры испарением жидкого теплоносителя, причем теплоотдача идет через тепловой контакт теплоотдающих элементов конструкции радиоэлектронной аппаратуры с рабочим объемом испарителя, а сброс паров теплоносителя осуществляется в забортное пространство. Недостаток способа обеспечения теплового режима аппаратуры, реализуемого в известной системе тепловой защиты, заключается в осуществлении контакта жидкого теплоносителя или его паров непосредственно с охлаждаемой аппаратурой, что приводит к ухудшению термостабилизации аппаратуры и снижению надежности ее функционирования в связи с возникающими значительными градиентами температур. При этом следует отметить также то, что отсутствие теплоизоляции сопровождается дополнительной тепловой нагрузкой на систему охлаждения и, соответственно, увеличением массы жидкого теплоносителя.

Известна также двухконтурная система обеспечения теплового режима (СОТР) приборно-агрегатного оборудования летательного аппарата (см. "Системы терморегулирования космических аппаратов", перевод с английского под редакцией Г.И. Воронина. - М.: Машиностроение, 1968 г., с.168-170, ближайший аналог). Система содержит емкость с хладагентом, регулирующий подачу хладагента клапан, газожидкостный теплообменник-испаритель, жидкостная полость которого через регулятор давления связана с окружающей ЛА внешней средой. Способ обеспечения теплового режима приборного оборудования с помощью такой системы заключается в охлаждении аппаратуры приборного отсека циркулирующим газом и охлаждении газа в контуре с испарительным циклом за счет испарения низкокипящего хладагента с отводом его паров в атмосферу. Известный способ обеспечения теплового режима приборного оборудования является достаточно эффективным по критерию охлаждения аппаратуры приборного отсека в течение ограниченного по времени полета ЛА, однако обладает недостатками:

- не предусматривает осуществление условий для термостабилизации аппаратуры на начальном участке движения ЛА: перепад температур охлаждающего приборный отсек газа весьма значителен и может составлять 10-20°C за непродолжительный промежуток времени, что отрицательно воздействует на аппаратуру (см. фиг.1, кривая 1);

- для обеспечения теплового режима аппаратуры по данному способу необходима увеличенная масса хладагента, т.к. СОТР функционирует в течение всего времени полета ЛА;

- используемая для реализации способа СОТР имеет повышенную массу и пониженную надежность, т.к. содержит регулятор давления для связи с окружающей внешней средой.

Задачей настоящего изобретения является улучшение термостабилизации бортовой аппаратуры, уменьшение массы системы охлаждения с одновременным повышением надежности работы системы охлаждения.

Поставленная задача решается тем, что охлаждение аппаратуры приборного отсека осуществляют вентиляцией при одновременном задействовании аппаратуры в течение времени, определенного по соотношению:

Δ τ = К н С М ( Т д о п Т н а ч ) N ,

где Δτ - интервал времени, в течение которого осуществляют только вентиляцию аппаратуры приборного отсека, с;

Кн - коэффициент, учитывающий долю теплоемкости отдельных наиболее теплонапряженных блоков аппаратуры и блоков, для которых необходима термостабилизация на начальном этапе полета;

CM - теплоемкость бортовой аппаратуры, Дж/К;

Тдоп - максимальная допустимая температура бортовой аппаратуры, K;

Тнач - начальная температура бортовой аппаратуры, K;

N - тепловыделение бортовой аппаратуры, Вт,

с последующим охлаждением циркулирующего газа и отводом паров низкокипящего хладагента в атмосферу через герметизирующий элемент в виде мембранного клапана, разгерметизирующегося при давлении насыщенных паров кипения хладагента.

Предложенное техническое решение эффективно реализуется при обеспечении теплового режима теплоизолированного приборного отсека гиперзвукового летательного аппарата. Установка теплозащиты (теплоизоляции) на подверженных воздействию аэродинамического потока поверхностях приборных отсеков снижает проникающий к аппаратуре внешний тепловой поток и позволяет использовать для снятия тепловыделения от работающего оборудования систему охлаждения, в частности испарительного типа, с уменьшенными массогабаритными параметрами.

Для надежной работы аппаратуры приборных отсеков ЛА, особенно приборов системы наведения, на начальном участке полета необходима термостабилизация посадочных мест и обдувающего аппаратуру газового потока. Задействование испарительного контура системы охлаждения с низкокипящим хладагентом, например аммиаком, непосредственно после старта ЛА приводит к значительным изменениям температуры по времени циркулирующего газа, охлаждающего аппаратуру. Даже при использовании регулирующего подачу хладагента клапана изменение температуры обдувающего газа может составлять 10-20°C за непродолжительный интервал времени (20-30 секунд). Разработка для испарительного контура отдельной высокоточной системы для плавного регулирования температуры охлаждаемого газа в зависимости от подачи хладагента является труднореализуемой задачей, а созданная система с учетом размеров испарительного теплообменника имела бы высокие массогабаритные параметры и низкую надежность.

Сущность предложенного технического решения заключается в том, что после старта ЛА с момента включения аппаратуры и одновременного задействования вентиляционного контура в течение промежутка времени Δτ, определенного по приведенному соотношению, происходит обдув аппаратуры газом, который не охлаждается в испарительном контуре. При этом температура газа вентиляционного контура плавно повышается, также возрастает температура обдуваемой газом аппаратуры и, таким образом, осуществляется ее термостабилизация.

Осуществление в начальный этап движения ЛА только обдува аппаратуры неохлаждаемым газом возможно потому, что начальная температура аппаратуры Тнач, определяемая условиями старта ЛА с носителя, ниже допустимой температуры аппаратуры Тдоп, как правило, на 10-30°C, а аппаратура с приборной рамой обладает значительной массовой теплоемкостью СМ.

На фиг.1 представлен характер изменения температуры обдувающего газа на входе в аппаратуру:

1 - известный способ обеспечения теплового режима;

2 - предложенный способ обеспечения теплового режима.

Принятые обозначения:

Т н а ч г - начальная температура газа на входе в аппаратуру;

Т д о п г - максимальная допустимая температура газа на входе в аппаратуру.

На этапе разработки СОТР определяют ее параметры, поля температур и скорости изменения температур газовой среды и аппаратуры приборного отсека. В связи с тем, что блоки аппаратуры обладают разными теплоемкостными характеристиками и обдуваются вентиляционным газом с разными скоростями, скорость повышения температуры различных блоков будет неодинакова.

В предложенное соотношение для определения интервала времени Δτ введен безразмерный коэффициент Кн, учитывающий долю теплоемкости отдельных наиболее теплонапряженных блоков аппаратуры и блоков, для которых необходима термостабилизация на начальном этапе полета, в теплоемкости СМ всей аппаратуры приборного отсека. Использование коэффициента Кн позволяет предотвратить превышение температуры отдельных блоков аппаратуры допустимого уровня. Указанный коэффициент рассчитывается предварительно и подтверждается экспериментально.

В предложенном техническом решении снижение массы СОТР и повышение надежности работы системы охлаждения достигнуто тем, что отвод паров низкокипящего хладагента в атмосферу осуществляют через герметизирующий элемент в виде мембранного клапана, разгерметизирующегося при давлении насыщенных паров кипения хладагента. Мембранный клапан, установленный на выходе контура с испарительным циклом, после срабатывания устройства пуска хладагента в дозирующее устройство создает повышенное давление в полости испарительного теплообменника и препятствует вскипанию хладагента в дозирующем устройстве в момент начала подачи хладагента. Характеристики мембранного клапана (толщина мембраны, давление разгерметизации) определяются в основном параметрами низкокипящего хладагента. Например, при использовании в качестве хладагента жидкого аммиака перепад давлений, при котором происходит разрыв мембраны клапана, составляет ~1,7 кгс/см2.

Преимущества использования мембранного клапана заключаются в том, что он имеет минимальную массу и объем, повышенную надежность (по сравнению, например, с регулятором давления или иным регулирующим устройством).

Техническое решение поясняется схемой приборного отсека и двухконтурной системы охлаждения, представленной на фиг.2:

1 - теплоизолированный корпус приборного отсека;

2 - блоки аппаратуры приборного отсека;

3 - газожидкостный теплообменник-испаритель;

4 - вентилятор;

5 - мембранный клапан;

6 - емкость с хладагентом;

7 - пусковой пироклапан;

8 - клапан, регулирующий подачу хладагента.

Предложенный способ обеспечения теплового режима теплоизолированного приборного отсека летательного аппарата включает:

- в момент старта ЛА (на предстартовой подготовке) задействование размещенных в теплоизолированном корпусе приборного отсека 1 блоков аппаратуры 2 и одновременное включение вентилятора 4 - начинается функционирование вентиляционного контура;

- в течение интервала времени Δτ, определенного по приведенному

соотношению, осуществляют только вентиляцию аппаратуры приборного отсека, при этом температура аппаратуры не превышает максимального допустимого значения Тдоп;

- по истечении Δτ задействуют испарительный контур системы охлаждения - происходит подрыв пускового пироклапана 7, жидкий хладагент из емкости 6 поступает в регулирующий клапан В и в газожидкостный теплообменник-испаритель 3, где происходит охлаждение циркулирующего в вентиляционном контуре газа посредством испарения хладагента;

- за счет испарения хладагента в испарительном контуре повышается давление, при достижении в этом контуре давления насыщенных паров кипения хладагента происходит прорыв мембранного клапана 5 и пары хладагента выбрасываются в атмосферу;

- охлажденный в теплообменнике-испарителе 3 газ вентиляционного контура охлаждает нагретые блоки аппаратуры 2 и нагретый по замкнутому вентиляционному контуру поступает в теплообменник-испаритель.

Таким образом, предложенный способ обеспечения теплового режима теплоизолированного приборного отсека летательного аппарата позволяет улучшить термостабилизацию бортовой аппаратуры и уменьшить массу системы охлаждения путем задействования только вентиляционного контура двухконтурной системы охлаждения в течение определенного промежутка времени, а также повысить надежность работы испарительного контура системы охлаждения отводом паров низкокипящего хладагента в атмосферу через мембранный клапан.

Похожие патенты RU2531210C1

название год авторы номер документа
Способ обеспечения теплового режима приборного отсека летательного аппарата 2016
  • Кочнев Игорь Александрович
  • Пожалов Вячеслав Михайлович
  • Смирнов Александр Сергеевич
  • Свинцов Анатолий Вячеславович
RU2622173C1
Система обеспечения теплового режима приборного отсека летательного аппарата 2017
  • Горяев Андрей Николаевич
  • Пожалов Вячеслав Михайлович
  • Смирнов Александр Сергеевич
  • Будыка Сергей Михайлович
  • Саврушкин Владимир Андреевич
  • Новиков Андрей Евгеньевич
  • Измалкин Олег Сергеевич
RU2661178C1
СИСТЕМА ОХЛАЖДЕНИЯ ПРИБОРНОГО ОТСЕКА СКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2018
  • Галкин Иван Андреевич
  • Гончарова Вера Ефимовна
  • Мясников Сергей Рафаилович
  • Шевченко Александр Федорович
RU2714573C2
СИСТЕМА ТЕПЛОВОЙ ЗАЩИТЫ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ ЛЕТАТЕЛЬНОГО АППАРАТА 1977
  • Щепкин Лев Николаевич
  • Култышев Иван Дмитриевич
  • Фрайштадт Владимир Львович
  • Николаев Николай Борисович
  • Потрекий Арвид Владимирович
  • Исаков Виктор Николаевич
  • Степанов Анатолий Николаевич
  • Вавилов Александр Георгиевич
SU1840522A1
Система испарительного охлаждения с разомкнутым контуром для термостатирования оборудования космического объекта 2020
  • Котляров Евгений Юрьевич
  • Луженков Виталий Васильевич
  • Серов Геннадий Павлович
  • Финченко Валерий Семёнович
RU2746862C1
Способ обеспечения теплового режима приборного отсека летательного аппарата 2018
  • Леонов Александр Георгиевич
  • Смирнов Александр Сергеевич
  • Данилова Надежда Петровна
  • Пожалов Вячеслав Михайлович
  • Саврушкин Владимир Андреевич
  • Новиков Андрей Евгеньевич
  • Измалкин Олег Сергеевич
  • Будыка Сергей Михайлович
RU2705402C1
СИСТЕМА ТЕРМОСТАБИЛИЗАЦИИ ПРИБОРНОГО ОТСЕКА КОСМИЧЕСКОГО АППАРАТА 2015
  • Черномаз Виктор Иванович
  • Свищев Виктор Владимирович
  • Доронин Андрей Витальевич
  • Гончаров Константин Анатольевич
  • Моишеев Александр Александрович
RU2603690C1
Устройство тепловой защиты летательного аппарата 2017
  • Дергачев Александр Анатольевич
  • Пожалов Вячеслав Михайлович
  • Смирнов Александр Сергеевич
  • Логинов Владимир Григорьевич
  • Саврушкин Владимир Андреевич
  • Шубный Владимир Иванович
  • Матросов Андрей Викторович
RU2657614C1
СИСТЕМА ОБЕСПЕЧЕНИЯ ТЕПЛОВОГО РЕЖИМА КОСМИЧЕСКОГО ОБЪЕКТА 2002
  • Цихоцкий В.М.
  • Трусов М.А.
  • Табаков Г.Г.
RU2216490C1
Устройство тепловой защиты летательного аппарата 2021
  • Свинцов Анатолий Вячеславович
  • Пожалов Вячеслав Михайлович
  • Смирнов Александр Сергеевич
  • Саврушкин Владимир Андреевич
  • Дзивалтовский Виктор Николаевич
  • Новиков Юрий Михайлович
RU2763917C1

Иллюстрации к изобретению RU 2 531 210 C1

Реферат патента 2014 года СПОСОБ ОБЕСПЕЧЕНИЯ ТЕПЛОВОГО РЕЖИМА ПРИБОРНОГО ОТСЕКА ЛЕТАТЕЛЬНОГО АППАРАТА

Изобретение относится к авиационно-ракетной технике и может быть использовано для обеспечения теплового режима приборных отсеков сверх- и гиперзвуковых летательных аппаратов. Способ заключается в охлаждении бортовой аппаратуры циркулирующим газом с помощью двухконтурной системы охлаждения. При этом газ охлаждают в испарительном контуре за счет испарения низкокипящего хладагента, пары которого отводят в атмосферу. В начале полета охлаждение аппаратуры приборного отсека осуществляют только вентиляцией в течение времени, определяемого в зависимости от температуры, тепловыделения и теплоемкости аппаратуры. Далее задействуют указанный испарительный контур, причем отвод паров низкокипящего хладагента в атмосферу осуществляют через герметизирующий элемент в виде мембранного клапана. Этот клапан разгерметизируется при давлении насыщенных паров кипения хладагента. Техническим результатом изобретения является улучшение термостабилизации бортовой аппаратуры, уменьшение массы и повышение надежности системы охлаждения. 2 ил.

Формула изобретения RU 2 531 210 C1

Способ обеспечения теплового режима приборного отсека летательного аппарата, заключающийся в охлаждении аппаратуры циркулирующим газом с помощью двухконтурной системы охлаждения и охлаждении газа в контуре с испарительным циклом за счет испарения низкокипящего хладагента с отводом его паров в атмосферу, отличающийся тем, что охлаждение аппаратуры приборного отсека осуществляют вентиляцией при одновременном задействовании аппаратуры в течение времени, определенного по соотношению:
,
где Δτ - интервал времени, в течение которого осуществляют только вентиляцию аппаратуры приборного отсека, с;
Кн - коэффициент, учитывающий долю теплоемкости отдельных наиболее теплонапряженных блоков аппаратуры и блоков, для которых необходима термостабилизация на начальном этапе полета;
CM - теплоемкость бортовой аппаратуры, Дж/К;
Тдоп - максимальная допустимая температура бортовой аппаратуры, K;
Тнач - начальная температура бортовой аппаратуры, K;
N - тепловыделение бортовой аппаратуры, Вт,
с последующим охлаждением циркулирующего газа и отводом паров низкокипящего хладагента в атмосферу через герметизирующий элемент в виде мембранного клапана, разгерметизирующегося при давлении насыщенных паров кипения хладагента.

Документы, цитированные в отчете о поиске Патент 2014 года RU2531210C1

"Системы терморегулирования космических аппаратов"
Пер
с англ
под ред
Г.И
ВОРОНИНА, М.: Машиностроение, 1968 Г., С.168-170;
СПОСОБ ТЕРМОРЕГУЛИРОВАНИЯ ОБЪЕКТА, РАСПОЛОЖЕННОГО НА КОСМИЧЕСКОМ АППАРАТЕ, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Глухих Игорь Николаевич
  • Челяев Владимир Филиппович
RU2467931C1
СИСТЕМА ТЕПЛОВОЙ ЗАЩИТЫ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ ЛЕТАТЕЛЬНОГО АППАРАТА 1977
  • Щепкин Лев Николаевич
  • Култышев Иван Дмитриевич
  • Фрайштадт Владимир Львович
  • Николаев Николай Борисович
  • Потрекий Арвид Владимирович
  • Исаков Виктор Николаевич
  • Степанов Анатолий Николаевич
  • Вавилов Александр Георгиевич
SU1840522A1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ ОРБИТАЛЬНОЙ СТАНЦИИ 1987
  • Абакумов Леонид Григорьевич
  • Вивденко Александр Александрович
  • Грезин Александр Кузьмич
  • Деньгин Валерий Георгиевич
  • Кропотин Юрий Геннадьевич
  • Куркин Владимир Нилович
  • Андреев Владимир Васильевич
  • Маслаков Владимир Александрович
  • Мифтахов Рафик Мугалимович
  • Никонов Алексей Андреевич
  • Овчинников Виктор Сергеевич
  • Пучинин Александр Васильевич
  • Романенко Юрий Викторович
  • Сургучев Олег Владимирович
  • Цихоцкий Владислав Михайлович
  • Юрин Юрий Андреевич
SU1839913A1
US 6736205 B2, 18.05.2004
US 6786279 B2, 07.09.2004
US 3824598 A1, 16.07.1974

RU 2 531 210 C1

Авторы

Горяев Андрей Николаевич

Данилова Надежда Петровна

Смирнов Александр Сергеевич

Пожалов Вячеслав Михайлович

Логинов Владимир Григорьевич

Красильников Александр Александрович

Даты

2014-10-20Публикация

2013-05-30Подача