Изобретение относится к области получения магнитотвердых материалов, используемых в электротехнике и машиностроении.
Известен способ получения магнитотвердого материала [Magnetic properties of Sm-Fe(Ti)-C(N)/α-Fe alloys prepared by mechanical alloying, J. Phys. D: Appl. Phys. 36 (2003) 375-379]. Порошки чистоты 99,9% Sm, Ti, Fe и графит чистоты 99,7% смешивают в различные композиции, запечатывают их в атмосфере аргона в цилиндрические банки из закаленной стали. Закаленные стальные шарики имеют диаметр 12 мм. Размол выполняют в высокоэнергетической шаровой мельнице в течение 5 ч. Далее порошки отжигают при 1123 К и 30 мин в вакуумной печи. Азотирование проводят сразу после отжига в течение 5 часов при температуре 673 К. Недостатки: длительность и многооперационность процесса получения магнитотвердого материала. Содержание азота материала пониженное, в результате получается порошок, размеры которого невозможно контролировать, что оказывает негативное влияние на магнитные свойства.
Известен способ получения порошков Sm2Fe17Nx-α-Fe [Mikio Ito Sm2Fe17Nx-α-Fe anisotropic composite powders prepared by Sm evaporation and mechanical grinding in NH3 Scripta Materialia, 46 (2002), 695-698]. Способ включает в себя приготовление сплава Sm12.8Fe87.2 индукционной плавкой смеси Sm и Fe порошков и последующего дробления до 45-150 лм. Порошки были подвержены термообработке при 1273 К для 3.6-18.0 кс в кварцевой трубке. Атмосферное давление NH3 при использовании в поворотной шаровой мельнице 18,0 кс, а затем проводилось азотирование в проточном газе N2 при температуре 723 К в течение 21,6 кс.
Недостатком данного способа является невозможность получить содержание азота 3%, а также длительность и сложность процесса.
Известен способ получения магнитотвердого сплава на основе редкоземельного металла (в частности самария) и железа [Патент №US8329056]. В данном способе смешивают исходные компоненты (самарий и железо) в соотношении 11 ат.% Sm и 89 ат.% Fe, проводят механическое легирование и далее азотирование полученного сплава Sm2Fe17. При этом размер частиц Sm2Fe17N3 составляет 1-10 нм. После чего для улучшения магнитных характеристик частицы покрывают эпоксидным олигомерным слоем при температуре 70-76°C. Толщина такого слоя составляет 30-100 нм.
Недостатком способа является сложность процесса покрытия частиц, а также невозможность получить содержание азота 3%, что значительно влияет на магнитные характеристики сплава.
В качестве прототипа выбран способ получения магнитного материала, основанного на системе Sm-Fe-N [US Патент №5288339А]. Сплав Sm2Fe17 получали механическим легированием, при этом варьировалась интенсивность, материал и диаметр шаров мельницы. В качестве исходных компонентов выбраны порошки самария и железа чистотой не менее 99,5%. Рентгенофазовый анализ после механического легирования показал наличие аморфной фазы и фазы альфа-железа. С целью получения кристаллической структуры проводят нагрев до 700°C. Далее проводили азотирование полученного сплава в две стадии. На первой стадии применялись следующие параметры: температура - 300-400°C, длительность - 10-1000 часов, содержание азота - 1,5%. Параметры второй стадии: температура - 500°C, длительность - 16 часов, содержание азота около 3%. Благодаря двухстадийному процессу азотирования получили стабильный нитрид.
Недостатком данного способа является сложность процесса из-за двухстадийности азотирования, большие временные затраты и невозможность достигнуть содержания азота около 3%, что приводит к ухудшению коэрцитивной силы - 17-22 кА/см.
Задачей является разработка простого и быстрого способа получения магнитотвердого материала Sm2Fe17Nx, увеличение коэрцитивной силы.
Для решения задачи предложен способ получения магнитотвердого соединения Sm2Fe17Nx, заключающийся в смешивании исходных порошковых компонентов Sm и Fe и их механоактивации в высокоэнергонапряженной вибромельнице в течение 2-3 часов. Механоактивацию проводят в инертной атмосфере без содержания влаги. Далее в реактор вводят аммиак и водород в соотношении NH3 - 85-95% и Н2 - 5-15% и продолжают процесс механоактивации еще в течение 5-7 часов. После чего в реактор вводят высокомолекулярное соединение полиметилметакрилат в количестве 2-4% от массы исходной порошковой смеси и продолжают механоактивацию еще 10-15 минут. В качестве инертной атмосферы можно использовать аргон, гелий и т.п.
Проведение механоактивации в определенных условиях позволяет исключить взаимодействие со средой и окисление исходных компонентов. Разбавление аммиака водородом повышает азотный потенциал атмосферы и тем самым ускоряет процесс азотирования.
Непрерывная механоактивация способствует ускорению процесса азотирования и улучшению магнитных характеристик материала.
Введение полиметилметакрилата (ПММА) позволяет получать мелкодисперсные порошки с их равномерным распределением по размеру.
Совокупность отличительных признаков является необходимой и достаточной для решения поставленной задачи.
При времени механоактивации менее 2 часов не получаем фазу Sm2Fe17. Проводить механоактивацию более 3 часов нецелесообразно из-за сильного окисления компонентов.
Соотношение газов аммиак/водород в диапазоне NH3-85 - 95% и Н2-5 - 15%, а также дальнейшая механоактивация в течение 5-7 часов позволяют получить содержание азота 2,5-3%, что приводит к образованию соединения Sm2Fe17N3. Количество водорода более 15% и аммиака менее 85% в смеси аммиак/водород не позволяет повысить азотный потенциал атмосферы из-за малого количества аммиака, а соответственно и ускорить процесс азотирования. Количество водорода менее 5% и более 95% аммиака нецелесообразно, т.к. является недостаточным для повышения потенциала азота. Времени механоактивации менее 5 часов недостаточно для получения соединения Sm2Fe17N3, а более 7 часов - нецелесообразно.
Введение высокомолекулярного соединения полиметилметакрилата (ПММА) в количестве 2-4% от количества исходной порошковой смеси и дальнейший размол в течение 10-15 минут приводят к дисперсности порошка менее 40 мкм. Введение ПММА в количестве, меньшем 2%, является недостаточным для достижения равномерности и необходимой дисперсности порошка, добавление ПММА в количестве, большем 4%, нецелесообразно.
Размол менее 10 минут не приведет к равномерной дисперсности порошков, время размола более 15 минут нецелесообразно, т.к. процесс формирования необходимой дисперсности уже завершен.
Для получения магнитотвердого материала Sm2Fe17Nx выбрана порошковая смесь Sm и Fe для образования соединения Sm2Fe17. Проводим механоактивацию в высокоэнергонапряженной мельнице в инертной атмосфере без содержания влаги в течение 3 часов. Для образования инертной атмосферы производят очистку газа аргона (примеры 1-3) и гелия (примеры 4-5), для чего пропускают газ через титановую и медную стружку в печи при низких температурах и вводят его в мельницу. Для удаления влаги в мельнице используют силикагель. Для азотирования в реактор мельницы вводят аммиак и водород в соотношении: NH3 - 85% и Н2 - 15%. Процесс механоактивации происходит непрерывно. Продолжаем механоактивацию в течение 6 часов. Вводим высокомолекулярное соединение полиметилметакрилата (ПММА) в количестве 3% от массы исходной порошковой смеси (11% Sm и 89% Fe). Продолжаем процесс механоактивации еще 12,5 минут. Количество азота в материале - 2,95% (таблица)
Время получения магнитотвердого материала сокращено за счет одностадийности процесса азотирования и непрерывного процесса механолегирования.
За счет использования смеси аммиака и водорода и непрерывности процесса механолегирования получаем содержание азота ~3%, что приводит к увеличению коэрцитивной силы материала - 22-25 кА/см.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОТВЕРДОГО МАТЕРИАЛА SmMN | 2015 |
|
RU2596166C1 |
Способ получения магнитотвердого материала | 2016 |
|
RU2648335C1 |
Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом | 2016 |
|
RU2639889C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОСТОЯННЫХ МАГНИТОВ НА ОСНОВЕ СПЛАВОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ С ЖЕЛЕЗОМ И АЗОТОМ | 2015 |
|
RU2601149C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОСТОЯННЫХ МАГНИТОВ И СПОСОБ ИЗМЕЛЬЧЕНИЯ СПЛАВОВ ПРИ ИХ ПОЛУЧЕНИИ | 1995 |
|
RU2082241C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ КОМПОЗИЦИОННЫХ КАТОДНЫХ МАТЕРИАЛОВ LiFeMSiO/C | 2013 |
|
RU2522939C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА НА ОСНОВЕ НИТРИДА БОРА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ФЕНОЛА, КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ, И СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ФЕНОЛА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА | 2011 |
|
RU2473471C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ НИТРИДА УРАНА | 2013 |
|
RU2522814C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСНОУПРОЧНЕННОЙ ВЫСОКОАЗОТИСТОЙ АУСТЕНИТНОЙ ПОРОШКОВОЙ СТАЛИ С НАНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ | 2013 |
|
RU2513058C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА | 2013 |
|
RU2524061C1 |
Изобретение может быть использовано при получении магнитотвердых материалов, используемых в электротехнике и машиностроении. Способ получения магнитотвердого материала Sm2Fe17Nx включает смешивание порошков Sm и Fe, их механоактивацию и последующее азотирование. Сначала проводят механоактивацию в высокоэнергонапряженной мельнице в инертной атмосфере без содержания влаги в течение 2-3 часов. Для азотирования в реактор мельницы вводят аммиак и водород в соотношении NH3 - 85-95%, H2 - 5-15% и продолжают механоактивацию в течение 5-7 часов. После этого вводят высокомолекулярное соединение полиметилметакрилат (ПММА) в количестве 2-4% от массы исходной порошковой смеси и продолжают процесс механоактивации еще 10-15 минут. Изобретение позволяет сократить время получения магнитотвердого материала и увеличить его коэрцитивную силу. 1 табл.
Способ получения магнитотвердого материала Sm2Fe17Nx, заключающийся в смешивании порошков Sm и Fe для образования соединения Sm2Fe17, их механоактивации с последующим азотированием, отличающийся тем, что на начальном этапе механоактивацию проводят в высокоэнергонапряженной мельнице в инертной атмосфере без содержания влаги в течение 2-3 часов, для азотирования в реактор мельницы вводят аммиак и водород в соотношении NH3 - 85-95% и H2 - 5-15%, продолжают механоактивацию в течение 5-7 часов с последующим введением высокомолекулярного соединения полиметилметакрилата (ПММА) в количестве 2-4% от массы исходной порошковой смеси и продолжают процесс механоактивации еще 10-15 минут.
US 5288339 A, 22.02.1994 | |||
ПОЛИМЕРНЫЙ МАГНИТНЫЙ МАТЕРИАЛ | 2002 |
|
RU2226012C1 |
US 2012164019 A1, 28.06.2012; | |||
US 2011074531 A1, 31.03.2011 | |||
JP 2004010927 A, 15.01.2004; | |||
MIKIO ITO et al., Sm2Fe17Nx + α-Fe anisotropic composite powders prepared by Sm evaporation and mechanical grinding in NH3, Scripta Materialia, 2002, v | |||
Способ изготовления звездочек для французской бороны-катка | 1922 |
|
SU46A1 |
695-698. |
Авторы
Даты
2014-10-20—Публикация
2013-04-22—Подача