УСТРОЙСТВО ДЛЯ НЕИНВАЗИВНОГО ИЗМЕРЕНИЯ СОДЕРЖАНИЯ ГЛЮКОЗЫ Российский патент 2014 года по МПК A61B5/145 

Описание патента на изобретение RU2532498C2

Область техники

[0001] Настоящее изобретение относится к области медицины и, в частности, к устройству для неинвазивного измерения уровня содержания глюкозы в крови пациента.

Уровень техники

[0002] Диабет и его осложнения создают серьезные экономические проблемы для индивидуумов, семей, систем здравоохранения и стран. Ежегодные расходы, связанные с диабетом, в 2007 году только в США составляли по оценкам свыше 170 миллиардов долларов с учетом как прямых, так и косвенных затрат (American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care. 2008 March, 31(3): 1-20). В 2010 расходы, связанные с диабетом, будут составлять 11,6% от всех расходов в мире на здравоохранение. Считается, что приблизительно у 285 миллионов человек во всем мире в 2010 будет диабет, что составляет 6,6% от всего взрослого населения в мире, а прогноз на 2030 год составляет 438 миллионов (International Diabetes Federation. Diabetes Atlas, Fourth edition. International Diabetes Federation, 2.009).

[0003] В последние годы исследования окончательно доказали, что более совершенное управление содержанием глюкозы снижает долгосрочные осложнения, связанные с диабетом (см.: DCCT Research Group.The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. North England Journal of Medicine. 1993 Sep30; 329(14): 977-986; UKPDS Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in subjects with type 2 diabetes (UKPDS33). The Lancet. 1998 Sepl2; 352(9131): 837-853). Согласно Американской Ассоциации диабета (ADA), самоконтроль содержания глюкозы в крови (SMBG) положительно влияет на лечение с помощью инсулина, пероральных агентов или диеты (American Diabetes Association. Clinical Practice Recommendations, Standards of medical care in diabetes. Diabetes Care. 2006 Jan 29: S4-S42). В своей публикации «Совместное заявление: европейская перспектива», Научно-исследовательский институт диабета в Мюнхене рекомендует самоконтроль содержания глюкозы в крови (самоконтроль содержания глюкозы в крови SMBG, Self-Monitoring of Blood Glucose) для всех типов подходов к лечению диабета, что позволяет достигнуть лучшего управления содержанием глюкозы и значений, которые близки к норме, без повышения риска гипогликемии (Schnell О et al., Diabetes, Stoffwechsel und Herz, 2009; 4:285-289). Кроме того, Международной Федерацией Диабета (IDF) были недавно сформулированы специальные руководящие положения с соответствующими рекомендациями для организации самоконтроля содержания глюкозы в крови для больных сахарным диабетом второго типа (T2DM), лечение которого не связано с введением инсулина (Recommendations based on a workshop of the International Diabetes Federation Clinical Guidelines Taskforce in collaboration with the SMBG International Working group.Guidelines on Self-Monitoring of Blood Glucose in Non-Insulin Treated Type 2 Diabetics. International Diabetes Federation, 2009).

[0004] Самоконтроль содержания глюкозы в крови способствует как изучению диабета, так и его лечению. Он облегчает наблюдение за отдельными больными, обеспечивая средство для объективной обратной связи с учетом особенностей ежедневного образа жизни, индивидуальных профилей содержания глюкозы, включая влияние упражнений и рациона питания на этот профиль, и, таким образом, стимулирует индивидуума делать необходимые изменения. Кроме того, самоконтроль содержания глюкозы в крови позволяет врачам давать индивидуальные рекомендации об особенностях образа жизни и лекарствах, позволяющих понизить содержание глюкозы в крови (BG, blood glucose), таким образом способствуя достижению конкретных целей в отношении заболевания диабетом.

[0005] Неудобства, расходы, боль и сложности, связанные с обычным (инвазивным) самоконтролем содержания глюкозы в крови, приводят, однако, к неполному использованию возможностей такого самоконтроля, главным образом у людей с диабетом 2 типа (см. Mollema ED, Snoek FJ Heine RJ, Van der Ploeg HM, Phobia of slf-injecting and self-testing in insulin treated diabetes patients: Opportunities for screening. Diabet Med. 2001; 18:671-674; Davidson MB, Castellanos M, Kain D, Duran P. The effect of self monitoring of blood glucose concentrations on glycated hemoglobin levels in diabetic patients not taking insulin: a blinded, randomized trial. Am J Med. 2005; 118(4):422-425; Hall RF, Joseph DH, Schwartz-Barcott D: Overcoming obstacles to behavior change in diabetes self-management. Diabetes Educ. 2003; 29:303-311). Доступность точного, безболезненного, недорогого и простого в использовании устройства будет способствовать более частой проверке (Wagner J, Malchoff С, Abbott G. Invasiveness as a Barrier to Self-Monitoring of Blood Glucose in Diabetes. Diabetes Technology & Therapeutics. 2005 August; 7(4): 612-619; Soumerai SB, Mah C, Zhan F, Adams A, Baron M, Fajtova V, Ross-Degnan D. Effects of health maintenance organization coverage of selfmonitoring devices on diabetes self-care and glycemic control. Arch Intern Med.2004; 164:645-652), что позволит лучше управлять содержанием глюкозы и отодвинет/уменьшит длительные осложнения, что снизит соответствующие затраты на здравоохранение.

а) Неинвазивный (NI, Non-invasive) контроль содержания глюкозы позволит уменьшить стоимость процедуры самоконтроля содержания глюкозы в крови и значительно увеличить частоту тестов. Главной проблемой неинвазивных способов является достижение высокоточных результатов, несмотря на то, что никакого прямого исследования крови или тканевой жидкости не производится.

[0006] Поэтому, как хорошо известно специалистам в области медицины, одним из наиболее важных компонентов крови, содержание которого требуется измерить в диагностических целях, является глюкоза, особенно для пациентов, страдающих диабетом. Известным и наиболее распространенным техническим решением для определения концентрации глюкозы в крови является взятие образца крови и нанесение этой крови на калориметрическую полоску со специальным ферментом или на электрохимический пробник. Обычно пробу берут из пальца посредством укола. Очевидно, что для больных диабетом, которые должны измерять содержание глюкозы в крови, возможно, по несколько раз в день, эта процедура вызывает массу неудобств, значительно травмирует кожу, в особенности укалываемый палец, и, конечно, способствует попаданию инфекции.

[0007] В течение многих лет существовало множество процедур по контролю и измерению уровня глюкозы у людей и животных. Однако эти способы в общем случае включают инвазивные методы и, таким образом, включают определенную степень риска или, по меньшей мере, несут некоторый дискомфорт пациенту. Недавно были разработаны некоторые неинвазивные способы, но они не всегда обеспечивают оптимальные измерения содержания глюкозы крови. В настоящее время не существует никакого решения, подтвержденного на практике.

[0008] Большинство способов неинвазивного контроля сконцентрированы на использовании падающего излучения, которое способно проникать в ткань и исследовать кровь. Известные в настоящее время подходы к неинвазивному измерению содержания глюкозы главным образом основаны на оптической технике. Менее успешные и относительно редко применяемые электрические измерения сконцентрированы на исследовании диэлектрических свойств водных растворов в некотором заданном частотном диапазоне, как правило 1-50 МГц. В той или иной форме, такие способы пытаются контролировать влияние глюкозы или другого анализируемого вещества на диэлектрическую частотную характеристику или непосредственно глюкозы, или ее вторичного влияния на воду.

[0009] Хотя были произведены исследования по использованию акустического мониторинга, в последнее время основные усилия были направлены на определение разности скоростей звука в различных органах. В рамках этих исследований были сделаны попытки найти корреляцию изменения скорости звука при хронических или непрерывных болезненных состояниях. Кроме того, имеется обширная медицинская и научная литература, относящаяся к использованию акустических поглощающих и рассеивающих свойств органов для создания изображений, терапии и диагностики.

[0010] В известных способах измеряют только один параметр. Таким образом, возможность ошибки возрастает.

[ООН] В патенте США №6954652 раскрыты неинвазивные способы (но не устройства) измерения скорости звука в крови, удельной проводимости крови и теплоемкости крови. После этого вычисляют уровень содержания глюкозы для каждого из этих трех измерений, а конечное значение содержания глюкозы определяют как среднее значение этих трех рассчитанных значений.

[0012] Хотя в этом патенте сказано, что могут быть проведены измерения скорости звука в крови, удельной проводимости крови и теплоемкость крови, совершенно не раскрыто, как может быть построено устройство, способное произвести такие измерения. Поэтому настоящее изобретение является усовершенствованием патента США №6954662 и раскрывает конкретное устройство, в котором могут быть произведены эти измерения.

[0013] Итак, существует потребность в более точном устройстве для неинвазивного измерения уровня глюкозы посредством контроля множества параметров в едином устройстве. Поэтому целью настоящего изобретения является создание устройства для неинвазивного измерения уровня глюкозы в субъекте. Эта цель достигнута в рамках формулы изобретения и последующего описания, в котором раскрыты предпочтительные аспекты изобретения, относящиеся к предпочтительным дополнительным и/или альтернативным вариантам выполнения настоящего изобретения.

Сущность изобретения

[0014] Эти и другие цели изобретения достигнуты в устройстве, предпочтительно едином устройстве, которое способно неинвазивно измерять уровень содержания глюкозы в теле с использованием трех разных протоколов.

[0015] В частности, устройство согласно настоящему изобретению предпочтительно содержит основной блок, содержащий аппаратные средства и программные средства, и, предпочтительно, внешний блок (блоки) / внешнее устройство (устройства) (предпочтительно ушную клипсу) для крепления к пациенту. Внешний блок содержит первую и вторую части, которые соединены друг с другом, при этом первая и вторая части расположены на противоположных сторонах той части субъекта, к которой прикреплен указанный внешний блок. Например, когда внешний блок прикреплен к мочке уха пациента, две противолежащие стороны расположены на двух противоположных сторонах мочки уха, соответственно

[0016] Предпочтительно, чтобы единый блок содержал по меньшей мере один из следующих трех элементов, которые обеспечивают три отдельных и независимых неинвазивных измерения содержания глюкозы. Кроме того, предпочтительно, чтобы имелось по меньшей мере два или три элемента для проведения двух или трех отдельных и независимых неинвазивных измерений содержания глюкозы, соответственно. Согласно предпочтительному варианту выполнения настоящего изобретения, указанные по меньшей мере три различных элемента для проведения трех отдельных и независимых неинвазивных измерений содержания глюкозы расположены в пределах единого внешнего устройства, например в пределах единственного корпуса.

[0017] Кроме того, каждый из измерительных каналов сам по себе нов и оригинален. Следовательно, каждый измерительный канал может использоваться независимо (или совместно с другими измерительными каналами). При объединении этих трех измерительных каналов в одном едином устройстве имеет место получение результатов измерения из трех отдельных и уникальных измерительных каналов, что оптимизирует конечный результат.

[0018] Для неинвазивного измерения с использованием ультразвука предпочтительно, чтобы на противолежащих сторонах внешнего блока были установлены передатчик (например, ультразвуковой передатчик) и приемник (например, ультразвуковой приемник). Когда внешний блок установлен на пациенте, часть тела пациента (например, мочка уха) располагается между передатчиком и приемником. После приема результирующего сигнала, прошедшего через пациента, приемник посылает сигнал в основной блок для его обработки подходящими алгоритмами. В некоторых вариантах выполнения настоящего изобретения для экранирования и защиты передатчика и приемника могут использоваться мембраны.

[0019] Для проведения электромагнитных измерений во внешнем блоке имеется конденсатор. Обкладки конденсатора располагаются на противолежащих сторонах внешнего устройства, а часть тела (например, мочка уха), расположенная между частями внешнего блока, служит диэлектриком. В некоторых случаях мембраны, используемые для защиты и экранирования передатчика и приемника, могут служить также обкладками конденсатора.

[0020] Третье техническое решение основано на использовании тепла для измерения уровня глюкозы. С этой целью во внешнем устройстве предпочтительно имеются нагреватель и датчик. Предпочтительно, чтобы нагреватель и датчик (тепловой датчик) были расположены на противолежащих сторонах внешнего устройства. Однако согласно другому предпочтительному варианту выполнения настоящего изобретения, предпочтительно, чтобы нагреватель и датчик были установлены на одной и той же стороне из двух противолежащих сторон, например, нагреватель и датчик могут быть размещены на конце одной стороны внешнего блока.

[0021] Цели настоящего изобретения достигаются, например, в следующих аспектах изобретения.

[0022] Согласно первому аспекту единое устройство для неинвазивного измерения уровня глюкозы в субъекте содержит: ультразвуковые пьезоэлементы, установленные на противолежащих частях устройства и окружающие часть тела субъекта, к которой присоединено указанное устройство; обкладки конденсатора, установленные на противолежащих частях указанного устройства и окружающие часть тела субъекта, к которой присоединено указанное устройство; автоколебательное средство, соединенное с указанными обкладками конденсатора, и нагреватель и датчик, установленные в непосредственной близости к указанной части тела субъекта, к которой присоединено указанное устройство.

[0023] В одном предпочтительном варианте выполнения настоящего изобретения устройство дополнительно содержит внешнее средство (такое как ушную клипсу) для крепления к телу субъекта, при этом ультразвуковые пьезоэлементы, обкладки конденсатора, а также нагреватель и датчик находятся в пределах указанного внешнего средства.

[0024] Предпочтительно, чтобы главный блок управлял измерениями и вычислением уровня содержания глюкозы, и имелось средство для электрического соединения главного блока и внешнего средства либо гальваническим, либо беспроводным способом.

[0025] Предпочтительно, чтобы мембраны покрывали ультразвуковые пьезоэлементы.

[0026] Ультразвуковые пьезоэлементы предпочтительно включают передатчик и приемник.

[0027] Предпочтительно, чтобы обкладки конденсатора содержали мембраны. В таком варианте выполнения настоящего изобретения мембраны могут также покрывать ультразвуковые пьезоэлементы.

[0028] Предпочтительный вариант выполнения настоящего изобретения может содержать средство для определения расстояния между противолежащими частями указанного внешнего средства. В некоторых вариантах выполнения настоящего изобретения это средство может содержать магнит и датчик.

[0029] Кроме того, предпочтительно, может иметься винт для регулировки расстояния между противолежащими частями указанного внешнего средства.

[0030] В некоторых вариантах выполнения настоящего изобретения может иметься датчик температуры окружающей среды.

[0031] Согласно другим аспектам, индивидуальные измерительные каналы могут использоваться по отдельности.

[0032] Согласно второму аспекту настоящего изобретения, устройство для неинвазивного измерения уровня глюкозы в субъекте может содержать корпус, обкладки конденсатора, установленные на противолежащие части корпуса и окружающие часть тела субъекта, к которой прикреплено это устройство, и автоколебательное средство, соединенное с обкладками конденсатора.

[0033] В предпочтительном варианте выполнения настоящего изобретения устройство дополнительно содержит обрабатывающее средство для вычисления уровня содержания глюкозы на основе сигнала импеданса ткани и средство для передачи сигнала импеданса ткани в обрабатывающее средство.

[0034] В этом варианте выполнения настоящего изобретения устройство может содержать обкладки конденсатора, состоящие из мембран.

[0035] Согласно еще одному варианту выполнения настоящего изобретения, устройство может содержать ультразвуковые пьезоэлементы, установленные на противолежащие части корпуса и окружающие часть тела субъекта, к которой присоединено это устройство. Кроме того, могут иметься обкладки конденсатора, состоящие из мембран, а мембраны могут покрывать ультразвуковые пьезоэлементы.

[0036] В еще одном варианте выполнения настоящего изобретения устройство может содержать ультразвуковые пьезоэлементы, установленные на противолежащие части корпуса и окружающие часть тела субъекта, к которой присоединено это устройство, средство для обнаружения фазового сдвига между переданной и принятой волной и обрабатывающее средство для вычисления уровня содержания глюкозы на основе фазового сдвига, соединенное со средством для обнаружения фазового сдвига.

[0037] Согласно третьему альтернативному варианту выполнения настоящего изобретения, устройство может содержать нагреватель и датчик, установленные в указанном устройстве в непосредственной близости к части тела субъекта, к которой присоединено это устройство. Оно может содержать средство для передачи параметров теплопередачи в обрабатывающее средство для вычисления уровня содержания глюкозы.

[0038] Согласно третьему аспекту настоящего изобретения, устройство для неинвазивного измерения уровня содержания глюкозы, прикрепляемое к части тела субъекта, содержит ультразвуковые пьезоэлементы, установленные на противолежащих частях устройства и окружающие часть тела субъекта, к которой это устройство присоединено, и средство для обнаружения фазового сдвига между переданной и принятой волнами.

[0039] Это устройство предпочтительно может содержать обрабатывающее средство для вычисления уровня содержания глюкозы на основе указанного фазового сдвига и осуществляющее связь со средством обнаружения фазового сдвига.

[0040] Согласно одному из вариантов выполнения настоящего изобретения, устройство может также содержать нагреватель и датчик, установленные в этом устройстве в непосредственной близости к части тела субъекта, к которой присоединено указанное устройство. Оно может также содержать средство для передачи параметров теплопередачи в обрабатывающее средство для вычисления уровня содержания глюкозы.

[0041] Согласно четвертому аспекту настоящего изобретения, устройство для неинвазивного измерения уровня содержания глюкозы, прикрепляемое к некоторой части тела субъекта, содержит нагреватель и датчик, установленные в указанном устройстве в непосредственной близости к части тела субъекта, к которой присоединено это устройство, и средство для передачи параметров теплопередачи в обрабатывающее средство для вычисления уровня содержания глюкозы.

[0042] Другие цели, особенности и преимущества настоящего изобретения станут очевидными из последующего подробного описания с соответствующими чертежами и формулой изобретения.

Краткое описание чертежей

[0043] Цели изобретения полностью достигнуты в устройстве, раскрытом в пунктах формулы изобретения. Однако изобретение в отношении его организации, способа работы, а также целей, признаков и преимуществ, лучше всего может быть понято из последующего подробного описания со ссылками на сопровождающие чертежи, на которых иллюстрируются варианты выполнения настоящего изобретения, где:

[0044] на фиг.1 показано настоящее изобретения, в частности: основной блок (MU) и персональная ушная клипса (РЕС);

[0045] на фиг.2 показан вид персональной ушной клипсы сбоку с частичным удалением деталей и в разрезе;

[0046] на фиг.3 показана структура датчик-ткань для одного из вариантов теплового измерительного канала;

[0047] на фиг.4 показан график необработанной зависимости для процесса нагревания структуры датчик-ткань в субъекте при различных уровнях содержания глюкозы;

[0048] на фиг.5 показан график зависимости интегрированного и скорректированного по температуре эквивалентного теплового сигнала в субъекте от уровня содержания глюкозы;

[0049] на фиг.6А схематично показана мочка уха между двумя ультразвуковыми пьезоэлементами для ультразвукового измерительного канала;

[0050] на фиг.6В показан график, демонстрирующий фазовый сдвиг между переданной и принятой волнами, измеренный как Δφ;

[0051] на фиг.7 показан график, демонстрирующий зависимость фазового сдвига от входной частоты датчика в низкочастотной области; усиленные значения фазового сдвига показаны на частоте, которая была выбрана в качестве оптимальной частоты во время калибровки на субъекте;

[0052] на фиг.8 показан график для некоторого субъекта, для ультразвукового измерительного канала; на графике показан фазовый сдвиг (измеренный на выбранной частоте), скорректированный с учетом температуры, в зависимости от уровня содержания глюкозы;

[0053] на фиг.9 схематично показан электромагнитный измерительный канал;

[0054] на фиг.10 показан график электромагнитного сигнала (частоты), скорректированного с учетом температуры, в зависимости от уровня содержания глюкозы в субъекте;

[0055] на фиг.11 показан вид в перспективе ушной клипсы;

[0056] на фиг.12 показан вид сбоку ушной клипсы;

[0057] на фиг.13 показан вид сбоку с местным разрезом ушной клипсы;

[0058] на фиг.14А показан вид в перспективе элементов теплового измерительного канала;

[0059] на фиг.14В показан вид с торца с частичным разрезом элементов альтернативного варианта выполнения теплового измерительного канала;

[0060] на фиг.14С показан вид, аналогичный 14B, для альтернативного варианта выполнения настоящего изобретения;

[0061] на фиг.15 показан вид сбоку в разрезе первой мембраны для ультразвукового датчика, которая предпочтительно служит также одной из пластин конденсатора для электромагнитного измерительного канала;

[0062] на фиг.16 показан вид сбоку в разрезе второй мембраны для ультразвукового датчика, которая предпочтительно служит также одной из пластин конденсатора для электромагнитного измерительного канала;

[0063] на фиг.17А показан увеличенный вид наконечника ушной клипсы в разрезе и показаны элементы, составляющие измерительные каналы; и

[0064] на фиг.17В показан увеличенный вид сверху с разрезом наконечника ушной клипсы.

Подробное описание предпочтительного варианта осуществления

[0065] В последующем подробном описании сформулированы многочисленные конкретные детали, обеспечивающие полное понимание изобретения. Однако специалистам очевидно, что данное изобретение может быть реализовано на практике без этих конкретных деталей. В других случаях известные способы, процедуры и компоненты не описаны подробно, чтобы не мешать пониманию настоящего изобретения.

[0066] Предпочтительный вариант выполнения настоящей системы и ее преимущества лучше всего могут быть поняты при обращении к чертежам и последующему описанию, при этом одинаковыми позициями на различных чертежах обозначены сходные элементы. Ссылки на предпочтительные варианты выполнения настоящего изобретения даны для иллюстрации и понимания и не должны рассматриваться как ограничение.

[0067] Хотя настоящее описание относится к пациенту-человеку, очевидно, что устройство может использоваться для измерения содержания глюкозы в любом субъекте, включая животных.

[0068] В частности, устройство содержит основной блок 10, содержащий программное обеспечение, и внешний блок 12, прикрепляемый к пациенту. Как правило, внешний блок размещается на мочке уха пациента (субъекта или животного), так что внешний блок, как правило, выполнен в виде ушной клипсы.

[0069] Для соединения между основным блоком 10 и внешним блоком 12 предпочтительно используется кабель 14. Очевидно, что можно также использовать беспроводную технологию (например Bluetooth), и тогда кабель не нужен.

[0070] Очевидно, что внешний блок 12 может быть помещен на любую другую подходящую часть тела субъекта, например палец ноги, палец руки, ткань между большим и указательным пальцами. В общем случае, это должна быть часть тела, которая имеет кожный покров, и ткань и характеристики которой аналогичны характеристикам мочки уха. Если внешний блок установлен на теле в иной точке, нежели мочка уха, может понадобиться некоторая корректировка алгоритмов, поскольку характеристики кожи и ткани не одинаковы по всему телу.

[0071] На фиг.1 показано единое неинвазивное устройство для измерения нескольких значений содержания глюкозы с формированием результирующего содержания глюкозы. Для повышения точности неинвазивного измерения содержания глюкозы в устройстве согласно настоящему изобретению предпочтительно используется комбинация нескольких неинвазивных способов, предпочтительно трех неинвазивных способов: ультразвукового, электромагнитного и теплового. Эти способы учитывают физиологическую реакцию ткани на изменение содержания глюкозы, в результате чего меняются такие физические параметры, как электрическое и акустическое сопротивление, а также теплопроводность клеток и интерстициальных и плазменных компартментов вследствие изменения концентрации ионов, плотности, сжимаемости и гидратации обоих компартментов.

[0072] Как показано на фиг.1, этот неинвазивный монитор содержания глюкозы содержит основной блок 10, который управляет множеством различных каналов с датчиками, предпочтительно тремя различными каналами с датчиками (предпочтительно по одному на каждую технологию), расположенными во внешнем блоке, выполненном в виде персональной ушной клипсы 12 (фиг.1). Для проведения измерений на месте персональную ушную клипсу 12 зажимают на мочке уха пользователя на время измерения (около минуты), а затем снимают. Кабель 14 (или любое известное беспроводное средство (например, с технологией Bluetooth)) соединяет эти два компонента устройства.

[0073] Уникальным аспектом изобретения является то, что (единственный) внешний блок 12 реализует более одного канала/протокола измерения. Более предпочтительно, чтобы он содержал все элементы для выполнения множества отдельных и явных неинвазивных измерений содержания глюкозы. Предпочтительно, чтобы внешний блок содержал элементы для выполнения трех отдельных и явных неинвазивных измерений содержания глюкозы с помощью трех отдельных и явных технологий. Это единственное внешнее устройство обеспечивает преимущество, которое заключается в том, что только одно устройство должно быть присоединено к телу субъекта, что удобно для врача и/или пациента. В предпочтительном варианте выполнения настоящего изобретения внешний блок выполнен в виде ушной клипсы 12.

[0074] Следует также понимать, что каждый из измерительных каналов является инновацией и сам по себе. Следовательно, каждый измерительный канал может использоваться изолированно и отдельно (или совместно с другими измерительными каналами). При объединении трех измерительных каналов в одном едином устройстве мы получаем результаты из трех отдельных и уникальных измерительных каналов, что оптимизирует конечное значение.

[0075] Изменение содержания глюкозы в крови влияет на характеристики передачи тепла посредством изменения теплоемкости (Zhao Z. Pulsed Photoacoustic Techniques and Glucose Determination in Human Blood and Tissue. Acta Univ. Oul С 169. Oulu, Finland, 2002), плотность (Toubal M., Asmani M., Radziszewski E., Nongaillard B. Acoustic measurement of compressibility and thermal expansion coefficient of erythrocytes. Phys Med Biol. 1999; 44:1277-1287) и теплопроводности (Muramatsu Y., Tagawa A., Kasai T. Thermal Conductivity of Several Liquid Foods. Food Sci. Technol. Res.2005; II(3): 288-294) ткани благодаря сдвигу вода/электролит (Hillier ТА, Abbot RD, Barret EJ. Hyponatremia: evaluating a correction factor for hyperglycemia. Am J Med. 1999 Apr; 106(4): 399-403; Moran SM, RL Jamison. The variable hyponatremic response to hyperglycemia. West J Med. 1985 Jan; 142(1): 49-53). Таким образом, изменение в процессах теплопередачи, которое происходит в механической структуре многослойной ткани датчика, является прямым результатом изменения концентрации глюкозы (Wissler EH. Pennes' 1948 paper revisited. J App! Physiol. 1998 Jul; 85(1): 35-41). Чем выше концентрация глюкозы, тем ниже теплоемкость и ниже удельная теплопроводность, что обусловливает большее повышение температуры во внешних слоях ткани в ответ на нагревание. Поскольку датчик (датчики) (например термистор (термисторы)) согласно настоящему изобретению предпочтительно устанавливают/прикрепляют на слой эпидермиса, измеренная скорость и величина изменения температуры после нагревания больше, чем во внутренних тканях.

[0076] В рамках теплового способа согласно настоящему изобретению в ткань подают некоторое количество энергии. Предпочтительно, как скорость, так и величина изменения температуры, обусловленная подачей в ткань известного количества энергии, зависят от теплоемкости, плотности и удельной теплопроводности ткани. Таким образом, устройство согласно настоящему изобретению обеспечивает средство для косвенной оценки уровня содержания глюкозы путем измерения характеристик передачи тепла при нагревании ткани в течение заданного времени.

[0077] На фиг.3 показана структура датчик-ткань для одного из вариантов выполнения настоящего изобретения. Нижняя пластина служит нагревателем 18, а кроме того, имеются проводники 20 тепла (см. фиг.17). Тепловой датчик 22 установлен посередине между проводниками 20. Как показано на фиг.2, тепловой датчик расположен на наконечнике 24 ушной клипсы 12.

[0078] На фиг.12 и 13 показан тепловой модуль, который предпочтительно содержит термистор 22, нагреватель 18 и проводники 20, расположенные на держателе 26, который идет от конца одной стороны ушной клипсы 12 (например, на первой части ушной клипсы). Противолежащая поверхность 28 (то есть, вторая часть ушной клипсы) предпочтительно не содержит термисторных элементов. Другими словами, предпочтительно, когда нагреватель 18 и тепловой датчик 22 располагаются на одной стороне ушной клипсы. В частности, предпочтительно, чтобы нагреватель 18 и тепловой датчик 22 располагались на одной стороне относительно мочки уха, когда внешний блок 12 прикреплен к мочке уха.

[0079] Как показано на фиг.14А, 14В и 14С, нагреватель 18 предпочтительно выполнен в виде пластины или блока и предпочтительно образован резистором. К верхней части этой пластины крепятся две пластины 20, которые проводят тепловую энергию и служат проводниками 20. Указанное крепление может быть выполнено путем адгезии, склеивания, пайки или любого другого способа соединения. Предпочтительно, чтобы проводники 20 были выполнены из алюминия, но можно использовать любой проводник тепла. На нижней части пластины предпочтительно предусмотрены площадки 30 для пайки, которые могут использоваться для присоединения нагревателя 18 к интегральной плате 42 (см. фиг.13). Предпочтительно, чтобы корпус содержал все модульные компоненты датчика (например, термистора). В идеальном случае для системы с напряжением питания 4 В сопротивление (например, пластины нагревателя) составляет приблизительно между 23 и 43 Ом, а предпочтительно 33 Ом. Такая пластина нагревается приблизительно на 15-45°С, а предпочтительно приблизительно на 42-45°С. Может использоваться любой подходящий датчик тепла.

[0080] Нагреватель подает тепловую энергию на ухо. Начинается процесс нагревания со стандартной температуры окружающей среды 15-35°С. Обычно поверхность мочки ушка имеет немного большую температуру, 28-32°С. Мощность нагревателя предпочтительно составляет максимум 0,5 Вт, а минимум предпочтительно 0,1 Вт. Однако согласно другим предпочтительным вариантам выполнения настоящего изобретения, можно использовать и менее мощные нагреватели, которые предпочтительно работают большее время. Кроме того, можно использовать нагреватель большей мощности, который предпочтительно работает в течение меньшего времени.

[0081] Очевидно, что термисторный модуль должен быть достаточно малым, чтобы поместиться на наконечнике ушной клипсы. Предпочтительно, чтобы резисторная пластина, образующая нагреватель 18, имела длину приблизительно 5 мм, толщину 0,6 мм и ширину 2,4 мм. Проводники 20 предпочтительно имеют длину 1,5 мм, толщину 0,7 мм и ширину 2,4 мм. Датчик 22 предпочтительно имеет длину 1,30 мм, толщину 0,8 мм и ширину 2,0 мм. Это - стандартные элементы, доступные на рынке, а следовательно, стандартный доступный датчик не столь широк как резисторная пластина и проводники и находится немного над проводниками. Небольшая разница в габаритных размерах не важна.

[0082] Имеется несколько возможных вариантов выполнения теплового измерительного канала. Один предпочтительный вариант выполнения настоящего изобретения показан на фиг.14А. Этот вариант выполнения настоящего изобретения содержит термодатчик (термистор) 22, нагреватель 18 и проводники 20 тепла. Поверхность теплового модуля, которая входит в контакт с мочкой уха, покрыта теплопроводящим биологически совместимым покрытием 64. Когда нагреватель 18 включен, тепловой поток проходит через проводники 20 тепла и термистор 22 и через покрытие в мочку уха (или другую часть тела). Поглощение тепла мочкой уха зависит от уровня содержания глюкозы. Термистор 22 измеряет изменение температуры в мочке уха, которая зависит от интенсивности нагревания и поглощения мочкой уха. Эта температура используется для анализа путем обработки данных и для определения уровня содержания глюкозы.

[0083] На фиг.14В показан другой предпочтительный вариант выполнения теплового измерительного канала. Он содержит термодатчик (термистор) 22, нагреватель 18 и металлическую мембрану 58, которая имеет высокую удельную теплопроводность. Эти компоненты - мембрана 58, термистор 22 и нагреватель 18 - соединены теплопроводящим клеем 54. Предпочтительно, чтобы мембрана 58 была прикреплена к персональной ушной клипсе 12 клеем 56. У наружной поверхности мембраны 58 имеется хороший тепловой контакт с мочкой уха. Когда нагреватель 18 включен, тепловой поток проходит через термистор 22 и мембрану 58 к мочке уха (или другой части тела). Изменение температуры мочки уха зависит от уровня содержания глюкозы, а термистор 22 измеряет изменение температуры в мочке уха, которое используется затем при обработке данных для определения уровня содержания глюкозы.

[0084] Третий предпочтительный вариант выполнения теплового измерительного канала показан на фиг.14С. Он содержит термодатчик (термистор) 22, два нагревателя 18, печатную плату 60 и металлическую мембрану 58 с высокой удельной теплопроводностью. Эти компоненты - мембрана 58, термистор 22 и нагреватели 18 - соединены теплопроводящим клеем 54. Предпочтительно, чтобы мембрана 58 была приклеена к персональной ушной клипсе 12 клеем 56. Нагреватели 18 и термистор 22 припаивают к печатной плате 60. Наружная поверхность мембраны 58 имеет хороший тепловой контакт с мочкой уха. Когда нагреватели 18 включены, тепловой поток проходит через мембрану 58 к мочке уха (или к другой части тела). Изменение температуры мочки уха зависит от уровня содержания глюкозы, и термистор 22 измеряет изменение температуры в мочке уха, которое используется затем при обработке данных для определения уровня содержания глюкозы.

[0085] На фиг.4 показан график необработанной зависимости для процесса нагревания структуры датчик-ткань в субъекте. Различные формы кривой в процессе нагревания соответствуют различным концентрациям глюкозы. Температура указана в градусах Цельсия.

[0086] Температура окружающей среды, которая задает граничное условие для температуры поверхности кожи и влияет на начальную температуру датчиков, оказывает влияние на весь процесс. Поэтому процесс нагревания интегрируют и нормируют, чтобы учесть начальную температуру поверхности кожи, а затем компенсируют разность между температурой окружающей среды и температурой кожи (уравнение 1). Интегрированный, скорректированный и компенсированный сигнал (тепловой сигнал, Heat_signal) показан на фиг.5 как функция концентрации глюкозы.

H e a t _ s i g n a l = [ t 0 t f ( H e a t _ p r o c e s s ) d t T e a r ( t f t 0 ) ] k ( T e a r T a m b ) , ( 1 )

где t0 и tf - время начала и конца процесса нагревания; Tear и Tamb - температуры ткани и окружающей среды, соответственно и k - корректирующий множитель для температуры.

[0087] На фиг.5 показан интегрированный и скорректированный по температуре тепловой сигнал от субъекта в зависимости от уровня содержания глюкозы.

[0088] Изменения концентрации глюкозы можно косвенно оценить по измерению скорости звука в ткани. С увеличением концентрации глюкозы скорость звука также растет (Zhao Z. Pulsed Photoacoustic Techniques and Glucose Determination in Human Blood and Tissue. Acta Univ. Oul С 169. Oulu, Finland, 2002; Toubal M, Asmani M, Radziszewski E, Nongaillard B. Acoustic measurement of compressibility and thermal expansion coefficient of erythrocytes. Phys Med Biol. 1999; 44: 1277-1287; US Patent 5,119,819). Поскольку скорость звука линейно зависит от концентрации глюкозы, чем выше содержание глюкозы в ткани, тем быстрее в ней распространяется ультразвуковая волна, что уменьшает время распространения.

[0089] Ультразвуковой измерительный канал в предпочтительном варианте выполнения настоящего изобретения содержит пьезоэлементы, а именно: ультразвуковой передатчик 34 и ультразвуковой приемник 36, прикрепленный (или присоединяемый) к мочке 16 уха субъекта. Предпочтительно, этот канал содержит также радиосхему. Передатчик 34 (ультразвуковой пьезоэлемент) располагается во внешнем устройстве так, что (когда внешнее устройство присоединено к мочке уха) непрерывная ультразвуковая волна, создаваемая передатчиком, проходит через мочку с характерной скоростью, вызывая фазовый сдвиг (Δφ) между переданной и принятой волнами (фиг.6В).

[0090] Пьезоэлементы - передатчик 34 и приемник 36 (в качестве опции - имеющие усилители) - устанавливают по одному на каждой стороне мочки уха субъекта (см., например, фиг.6А). Основной блок 10 посылает сигнал в передатчик 34 для передачи сигнала. После распространения через мочку 16 уха приемник 36 усиливает принятый сигнал и посылает его назад в основной блок 10 для последующей обработки согласно некоторому алгоритму с формированием в результате соответствующего значения содержания глюкозы.

[0091] Передатчик 36 и приемник 34 установлены на противоположных сторонах мочки 12 уха. В общем случае эти ультразвуковые элементы чувствительны к механическому давлению. Для защиты этих элементов и сохранения эффективности элементов они предпочтительно закрыты мембранами 38 и 40 (см. фиг.15 и 16). Предпочтительно, между мембранами и ультразвуковыми элементами расположен ультразвукопроводящий адгезив или клей, например эпоксидная смола, плотно удерживающая мембраны на ультразвуковых элементах. В общем случае, адгезив, клей или эпоксидная смола должны быть способны проводить ультразвуковые волны с минимальными потерями сигнала. Обычно достаточно слоя адгезивного материала толщиной 0,05 мм.

[0092] Поскольку ультразвуковые пьезоэлементы также расположены в ушной клипсе, они должны быть небольшими. Они могут иметь любой подходящий размер, но в предпочтительном варианте выполнения настоящего изобретения, показанном здесь, ультразвуковые элементы являются круглыми с диаметром приблизительно 9,0 мм и имеют толщину меньше 3,0 мм. Мембраны 38, 40 предпочтительно являются круглыми и имеют диаметр приблизительно 9,5 мм. Очевидно, что размер может быть любым, пока элемент помещается в ушную клипсу.

[0093] На наружной поверхности мембраны 38, 40 предпочтительно расположено токопроводящее и биологически совместимое покрытие, улучшающее распространение сигнала. Как правило, покрытие имеет толщину 0,01 мм.

[0094] Предпочтительно, чтобы мембраны были изготовлены из никеля, который биологически стабилен и хорошо проводит сигналы. Может использоваться любой другой подходящий материал, например золото или титан.

[0095] Предпочтительно, чтобы мембраны 38, 40 были изготовлены из меди и были покрыты никелем. В альтернативном варианте выполнения настоящего изобретения мембраны могут быть изготовлены из нержавеющей стали и необходимость в покрытии отпадает.

[0096] В одном из вариантов выполнения настоящего изобретения было обнаружено, что предпочтительно, если одна мембрана 40 является плоской, а другая мембрана 38 - выпуклой. Эта «гибридная» комбинация обеспечивает наилучшее решение с точки зрения посадки и надежно закрепляет устройство на мочке уха субъекта.

[0097] Частоты могут лежать в диапазоне от 180 кГц до 1 МГц, а амплитуда сигналов может меняться от 0,5 Вт до 3 В. Амплитуда принятого сигнала может варьироваться от 5 мВ до 50 мВ. Предпочтительно, чтобы приемник усиливал сигнал приблизительно в 20 раз.

[0098] Как показано на фиг.15 и 16, ультразвуковые пьезоэлементы предпочтительно вставлены в соответствующие мембраны с помощью слоя клея (или эпоксидной смолы) между ними.

[0099] Скорость связана с фазой посредством уравнения 2:

V = ( f × d ) × 2 π / Δ ϕ , ( 2 )

где f - частота (Гц); Δφ - фазовый сдвиг (в радианах) и d - расстояние между пьезоэлементами датчиков (м).

[00100] В процессе калибровки выбирают две оптимальные частоты: одну из диапазона низких частот, и одну из диапазона высоких частот, при этом указанные частотные диапазоны не перекрываются. После калибровки проводят измерений на этих двух выбранных частотах.

[00101] На фиг.7 показана диаграмма измеренных значений фазового сдвига как семейство функций, имеющих в качестве аргумента частоту возбуждения, а содержание глюкозы - в качестве параметра семейства. Толщина ткани определяет измеряемую часть цикла фазового сдвига (возрастание или спад). В конфигурации на фиг.7 показана спадающая часть цикла, в результате чего G1×Δφ растет с ростом содержания глюкозы.

[00102] Эта диаграмма на фиг.7 демонстрирует зависимость фазового сдвига от частоты на входе для низкочастотной области. Усиленные значения фазового сдвига рассматриваются на выбранной частоте, которая была равна оптимальной частоте во время калибровки на субъекте. Различные кривые на диаграмме относятся к различным уровням содержания глюкозы.

[00103] Известно, что скорость ультразвуковых волн зависит от температуры среды распространения (см. патент США 5119819; Zips A, Faust U. Determination of biomass by ultrasonic measurements. Appl Environ Microbiol. 1989 July; 55(7): 1801-1807; Sarvazyan A, Tatarinov A, Sarvazyan N. Ultrasonic assessment of tissue hydration status. Ultrasonics. 2005; 43: 661-671). Температура окружающей среды воздействует на параметры датчика, тогда как температура ткани влияет на распространение волны в самой ткани. Поэтому необходима температурная поправка, зависящая от окружающей температуры и температуры ткани. Температурную поправку вносят в измеренный и усиленный фазовый сдвиг (фиг.8) с использованием следующего выражения (уравнение 3):

P h a s e _ s h i f t _ c o r = P h a s e _ s h i f t ± G 2 × ( 1 T a m b T e a r ) , ( 3 )

где Phase_shift_cor - усиленный фазовый сдвиг после температурной коррекции; G2 - поправочный коэффициент; Тamb - температура окружающей среды и Tear - температура поверхности мочки уха. Знак коррекции зависит от направления изменения фазы с частотой.

[00104] На фиг.8 показана зависимость фазового сдвига (измеренного на выбранной частоте) от содержания глюкозы с температурной коррекцией для субъекта.

[00105] Перенос воды и ионов, связанных с глюкозой, через клеточную мембрану приводит к изменениям электрических свойств клеток, а следовательно, межклеточных компартментов (Genet S, Costalat R, Burger J. The Influence of plasma membrane electrostatic properties on the stability of cell ionic composition. Biophys J. 2001 Nov; 81(5): 2442-2457; Hayashi Y, Livshits L, Caduff A, Feldman Y. Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. J Phys D: AppI Phys. 2003; 36: 369-374). Прежде всего, наблюдается изменение диэлектрических свойств (Gudivaka R, Schoeller D, Kushner RP. Effect of skin temperature on multi-frequency bioelectrical impedance analysis. AppI Physiol. 1996 Aug; 81(2): 838-845), которое приводит к изменению полного импеданса ткани. Для регистрации изменений электрического импеданса ткани, обусловленного изменением содержания глюкозы, электромагнитный канал (ЕМС) включает специальный автоколебательный контур и мочку уха, которая функционирует как диэлектрический материал, помещенный между двумя электродами, связанными с электрической схемой (фиг.9).

[00106] На фиг.9 показан электромагнитный измерительный канал (ЕМС), где Rin - входное сопротивление; Z(D, ε) - передаточный оператор чувствительного элемента - интегратор канала ЕМС, содержащий ткань мочки уха в петле обратной связи; постоянная времени передаточного оператора зависит от диэлектрической постоянной ткани, обозначенной как ε; D=d/dt; CP - паразитная емкость; f-meter - измерительная цепь для измерения частоты (f) автоколебаний; Т - релейный элемент с гистерезисом, создающий положительную обратную связь в автоколебательном контуре; Es - электрический потенциал на поверхности кожи.

[00107] Те же мембраны 38 и 40, которые используются для ультразвукового канала, могут предпочтительно служить обкладками конденсатора, а мочка 16 уха служит диэлектриком. Генератор используется для генерации сигналов, и эти сигналы зависят от параметров мочки уха.

Частоты могут колебаться от 5 кГц до 100 кГц, а амплитуды меняются приблизительно от 0,1 В до 1,5 В.

[00108] При измерениях учитывается также температура мочки уха, поскольку импеданс ткани зависит от температуры (Gudivaka R, Schoeller D, Kushner RF. Effect of skin temperature on multi-frequency bioelectrical impedance analysis. Appl Physiol 1996 Aug; 81(2): 838-845). Среди переменных, представляющих возмущение в электромагнитном канале, температура окружающей среды играет двоякую роль:

а) влияет на параметры ткани;

б) воздействует на электромагнитные параметры датчиков, такие как паразитная емкость электродов. Поэтому электромагнитный сигнал корректируют с учетом как температуры окружающей среды, так и температуры уха, с использованием уравнения (4), как показано на фиг.10.

E l e c t r o m a g n e t i c _ s i g n a l _ c o r = E l e c t r o m a g n e t i c _ s i g n a l D × ( 1 T a m b T e a r ) ( 4 )

где Electromagnetic_signal_cor - электромагнитный сигнал (частота автоколебаний) после температурной коррекции; D - поправочный коэффициент; Tamb - температура окружающей среды и Tear - температура поверхности мочки уха.

[00109] В предпочтительном варианте выполнения настоящего изобретения имеется также датчик расстояния, установленный на ушной клипсе (персональной ушной клипсе) 12: магнит 44 - на одной стороне и датчик 46 - на другой стороне. Датчик 46 предпочтительно представляет собой датчик магнитного поля, который измеряет интенсивность магнитного поля, обеспечивая, чтобы расстояние между мембранами было таким же, как на стадии калибровки.

[00110] На фиг.11 показан предпочтительный вариант выполнения ушной клипсы 12. Предпочтительно, она выполнена из акрилонитрил-бутадиен-стирола (ABS), но можно использовать любой подходящий материал. Размер зависит от размера мочки уха субъекта. В предпочтительном варианте выполнения настоящего изобретения это расстояние предпочтительно составляет приблизительно 25 мм в длину и в высоту. Оно может быть и меньше. Предпочтительно иметь клипсы различных размеров, чтобы можно было работать с субъектами с различными размерами мочек ушей.

[00111] Как известно, в клипсе, предпочтительно, одна сторона поворачивается относительно другой. У одной стороны имеется поворотный стержень, который входит в соответствующее место другой части ушной клипсы. Для смещения используется пружина.

[00112] Предпочтительно, чтобы имелся датчик 52 температуры окружающей среды, который может быть расположен во внешнем блоке 12, основном блоке 10 и/или на кабеле 14 (см. фиг.1).

[00113] Предпочтительно, чтобы, как это обычно имеет место в современных электронных устройствах, печатная плата 42 была установлена внутри ушной клипсы 12 (см. фиг.13). На ней размещены вышеуказанные компоненты трех каналов - ультразвукового, электромагнитного и теплового. Кроме того, обеспечивается связь с основным блоком посредством кабеля или беспроводного соединения (например, с использованием технологии Bluetooth). При необходимости основной блок выдает сигналы для запуска каждого измерительного канала, а затем для сбора данных и последующего вычисления содержания глюкозы.

[00114] Предпочтительно, до измерения содержания глюкозы производят калибровку для минимизации влияния индивидуальных квазистабильных факторов, таких как структура ткани. До калибровки датчик индивидуально регулируют для оптимальной подгонки в зависимости от толщины мочки уха пользователя. Предпочтительно, для регулировки расстояния между датчиками и, следовательно, давления на мочку уха при оптимальной подгонке используют регулировочный винт 50 (фиг.2, 14 и 16). Это действие может производиться основным блоком 10. Предпочтительно можно использовать опциональный датчик 44, 46 расстояния, обеспечивающий поддержание заданного расстояния.

[00115] После регулировки ушной клипсы (персональной ушной клипсы) 12, запускают процесс калибровки. Ниже описана одна предпочтительная процедура калибровки.

[00116] Процедура калибровки состоит в установлении корреляции базального содержания глюкозы в крови и содержания глюкозы после приема пищи, определенных инвазивным способом на основе анализа крови из пальца, при этом производят шесть последовательных измерений как с помощью устройства согласно изобретению, так и инвазивного устройства, данные которого используются в качестве эталонных, в результате чего строят калибровочную кривую, которая специфична для каждого пациента.

[00117] Первые три точки калибровки выполняют при одном уровне содержания глюкозы (натощак), что способствует установлению довольно точного исходного значения для модели, используемой при калибровке. Измерения выполняют натощак, при этом проводят одно инвазивное и три последовательных неинвазивных измерения, после чего пациент принимает пищу и пьет, чтобы увеличить содержание глюкозы в крови по меньшей мере на 30% по сравнению со значением натощак, но не меньше чем 30 мг/дл. В некоторых случаях этот этап можно проводить даже в состоянии не натощак. Через 20 минут выполняют серию из пяти последовательных пар измерений с временными интервалами приблизительно 10 минут между ними. Всего процесс калибровки занимает приблизительно от 1,5 до 2 часов.

[00118] В первой точке калибровки автоматически измеряют расстояние (с помощью дополнительного датчика 44, 46 расстояния, расположенного в ушной клипсе 12, или с использованием альтернативного способа) и устанавливают его в качестве эталонного расстояния (в исходном месте или заранее выбранной точке) для датчиков, которое в следующих точках калибровки, а также в точках измерения необходимо проверять еще до начала измерений. Мочка уха по существу представляет собой однородную ткань с параллельными поверхностями. Поэтому, если расстояние в какой-либо из точек калибровки или в точке обычного измерения отличается (в пределах заданной таблицы допусков) от заданной эталонной точки, устройство предложит пользователю переместить персональную ушную клипсу 12, чтобы добиться эталонного расстояния. Как только калибровка закончится, для каждого способа измерения устанавливается вектор параметров индивидуальной линейной модели.

[00119] Для теплового способа интенсивность нагревания проверяют во время измерения первой точки и вычисляют поправочный коэффициент для оптимальной интенсивности нагревания, который будет использоваться при последующих измерениях. Этот коэффициент вычисляют индивидуально для каждого пользователя, чтобы обеспечить повышение температуры поверхности ткани выше минимального шага возрастания.

[00120] Для электромагнитного способа генерируют колебания в трех близких, но различных частотных диапазонах. Оптимальный частотный диапазон выбирают в зависимости от индивидуальной чувствительности к изменениям содержания глюкозы во время калибровки. Кроме того, максимальные и минимальные девиации амплитуды на рабочей частоте и в следующем, соседнем частотном диапазоне устанавливают в качестве пороговых значений для фильтра пригодности электромагнитного сигнала (уравнение 5):

E M min < E M i E M j < E M max ( 5 )

где EMmin и EMmax - минимальное и максимальное пороговые значения электромагнитного сигнала, соответственно; EMi - электромагнитный сигнал в рабочем частотном диапазоне и EMj - электромагнитный сигнал в соседнем частотном диапазоне.

[00121] Для выбора оптимальных рабочих частот при акустическом способе измерений во время калибровки производят качание частоты в двух частотных диапазонах: в области низких частот и в области высоких частот. В каждой области оптимальную частоту выбирают в зависимости от амплитуды сигнала (силы прошедшего сигнала) и чувствительности фазового сдвига к изменениям содержания глюкозы на этой конкретной частоте. После калибровки измерения выполняют на этих двух выбранных частотах (одна в диапазоне низких частот и одна в диапазоне высоких частот).

[00122] Предпочтительно, чтобы в каждой точке калибровки измерялась температура окружающей среды и температуры ткани. В конце процесса калибровки определяют корреляцию между этими двумя температурами. Затем эту корреляцию используют для обнаружения несоответствия с температурами уха и окружающей среды для каждого измерения.

[00123] После калибровки измерения содержания глюкозы можно производить, прикрепляя ушную клипсу 12 к мочке уха на время измерения (приблизительно 1 минуту) и затем удаляя ее.

[00124] После проверки местоположения датчиков (выполняемого устройством) с использованием эталонного расстояния, определенного во время калибровки, начинают измерение. Каждый измерительный канал выдает несколько результатов, которые затем обрабатываются в три стадии: проверка пригодности сигнала и устранение помех; температурная компенсация и температурная поправка.

[00125] На первой стадии для ультразвукового канала проверяют амплитуду сигнала для каждой выбранной частоты, чтобы убедиться в надлежащем распространении волны через ткань.

[00126] Поскольку электромагнитные и ультразвуковые датчики физически установлены в одной и той же области ткани, низкая амплитуда измеренного сигнала указывает на плохой контакт. В этом случае результат измерения отбрасывают, и пользователю выдают аварийное сообщение. При тепловом способе датчик установлен в другом месте, нежели электромагнитные и ультразвуковые датчики. Поэтому хороший контакт для двух последних способов не гарантирует хорошего контакта для теплового канала. Таким образом, процесс нагревания также проверяют по минимальному и максимальному температурным порогам с помощью фильтра пригодности. Если значение нагрева находится вне допустимого диапазона, это расценивается как плохой контакт, и пользователь получает аварийное сообщение. Выход электромагнитного канала проверяют также на максимальную и минимальную девиацию между рабочим и соседним диапазонами частот, как рассмотрено при описании процесса калибровки.

[00127] Поскольку температуры как окружающей среды, так и ткани используются для компенсации в каждом канале измерения, их действительность нужно проверить в первую очередь. Поэтому на второй стадии проверяют температуры на корреляцию относительно калибровки. Для каждого измерения низкая корреляция указывает на сбой при измерении одной из измеренных температур. Нерелевантную температуру сначала компенсируют согласно другой температуре, а затем обе используют для температурной поправки сигнала, реализованной во всех трех способах измерения.

[00128] Третья стадия включает формирование температурной поправки для выходного сигнала для всех способов измерения, как рассмотрено выше. Кроме того, содержание глюкозы вычисляют для каждого канала измерения с использованием эталонных коэффициентов, которые были вычислены во время процедуры калибровки.

[00129] Принятые значения содержания глюкозы из каждого измерительного канала проверяют на корреляцию. Впоследствии назначают вес для каждого из трех значений согласно степени корреляции. В результате, комбинация этих трех значений с весами позволяет получить более точное значение содержания глюкозы.

[00130] Глюкоза и другие растворенные в крови вещества влияют на различные параметры ткани, такие как удельная проводимость, диэлектрическая постоянная, теплоемкость, плотность и сжимаемость в различных компартментах ткани (например, интерстиции, кровь, клетки). Таким образом, измерение таких параметров способствует оценке уровня содержания глюкозы в человеческом теле.

[00131] В общем случае, неинвазивные устройства (на стадиях разработки) производят либо анализ тенденции или дают непрерывный ряд значений содержания глюкозы, измеряют физиологические явления, которые отражают изменения параметров ткани, коррелирующие с содержанием глюкозы в крови (Khalil OS. Non-invasive glucose measurement technologies: An Update from 1999 to the Dawn of the New Millennium. Diabetes Technol Ther. 2004 Oct; 6(5): 660-697; Smith JL. The Pursuit of Noninvasive Glucose: "Hunting the Deceitful Turkey". 2006). Однако фактическое значение содержания глюкозы, определенное по такой корреляции, отличается от реального содержания глюкозы, поскольку на параметры ткани влияют также другие факторы помимо содержания глюкозы. Эти возмущающие факторы уменьшают отношение сигнал/шум и обусловливают неточность результатов измерения.

[00132] Для минимизации влияния таких возмущений была предложена методология, объединяющая несколько технологий и несколько датчиков. Каждая технология обеспечивает измерение различных параметров ткани, на величину которых влияет концентрация глюкозы. Таким образом, каждый способ по сути выявляет содержание глюкозы, но не точен из-за влияния мешающих факторов, так как полученное значение зависит не только от содержания глюкозы. Поэтому одновременная оценка указанных физиологических изменений посредством измерения различных наборов изменений параметров ткани, вызванных изменениями концентрации глюкозы, должно повысить надежность результатов.

[00133] Представленная методика демонстрирует перспективные результаты использования нескольких технологий и нескольких датчиков, поскольку их объединение способствует повышению отношения сигнал/шум. Эти несколько датчиков позволяют определить качество контакта датчиков, учитывают действительность измеренных параметров, а также обеспечивают компенсацию и коррекцию помех (например, при изменении температуры).

[00134] Хотя выше были показаны и описаны некоторые особенности изобретения, специалистам очевидны многочисленные изменения, подстановки, модификации и эквиваленты. Изобретение подробно описано на примере конкретного варианта его выполнения, но очевидно, что различные модификации все еще находятся в рамках изобретения. Поэтому следует понимать, что пункты формулы изобретения охватывают все такие изменения и модификации, соответствующие сути изобретения.

Похожие патенты RU2532498C2

название год авторы номер документа
СЕНСОРНОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЛОТНОСТИ БИОЛОГИЧЕСКОЙ ТЕКУЧЕЙ СРЕДЫ И/ИЛИ МЕМБРАННОГО СОПРОТИВЛЕНИЯ 2012
  • Эллингсен Олав
  • Эллингсен Бьярте Серебе
RU2609460C2
МАРКЕР СО СВЕТОИЗЛУЧАЮЩЕЙ ОБЛАСТЬЮ ДЛЯ ИСПОЛЬЗОВАНИЯ В ОПРЕДЕЛЕНИИ ИНФОРМАЦИИ О ПОКАЗАТЕЛЯХ ЖИЗНЕДЕЯТЕЛЬНОСТИ 2014
  • Дубельчик Александер
RU2664600C2
СПОСОБ НЕИНВАЗИВНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГЛЮКОЗЫ КРОВИ 2011
  • Бобылев Владимир Михайлович
  • Бобылева Галина Владимировна
  • Шмелев Владимир Михайлович
RU2525507C2
УСТРОЙСТВО ДЛЯ НАБЛЮДЕНИЯ ЗА ПАЦИЕНТОМ 2002
  • Карлсон Свен-Эрик
  • Цюнд Грегор
RU2288629C2
УСТРОЙСТВО ДЛЯ ЧРЕСКОЖНОГО ПРИЛОЖЕНИЯ РАЗДРАЖЕНИЯ ИЛИ ДЛЯ ЧРЕСКОЖНОГО ИЗМЕРЕНИЯ ПАРАМЕТРА 2007
  • Дитрих Штефан
  • Фрайтаг Тимо
RU2436607C2
СИСТЕМА И СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ ИНФОРМАЦИИ ОБ ОСНОВНЫХ ФИЗИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЯХ СУБЪЕКТА 2014
  • Дубельчик Александер
  • Нойманн Рольф
RU2688445C2
УСТРОЙСТВО И СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ И МОНИТОРИНГА КОМПОНЕНТОВ ИЛИ СВОЙСТВ ИЗМЕРЯЕМОЙ СРЕДЫ, В ЧАСТНОСТИ ЗНАЧЕНИЙ ФИЗИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ КРОВИ 2011
  • Кулькке Аксель
RU2562886C2
УСТРОЙСТВО ДЛЯ НЕИНВАЗИВНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГЛЮКОЗЫ (ВАРИАНТЫ) 2002
  • Шмелев В.М.
  • Бобылев В.М.
  • Тихонов А.М.
  • Демин О.В.
RU2233111C1
ДАТЧИК ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГАЗА 2013
  • Ван Кестерен Ханс Виллем
  • Калман Йозефус Арнольдус Хенрикус Мария
  • Ламберт Николас
RU2653633C2
СПОСОБ НЕИНВАЗИВНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГЛЮКОЗЫ 2001
  • Шмелев В.М.
  • Бобылев В.М.
RU2180514C1

Иллюстрации к изобретению RU 2 532 498 C2

Реферат патента 2014 года УСТРОЙСТВО ДЛЯ НЕИНВАЗИВНОГО ИЗМЕРЕНИЯ СОДЕРЖАНИЯ ГЛЮКОЗЫ

Изобретение относится к медицинской технике. Устройство для неинвазивного измерения уровня содержания глюкозы в субъекте содержит единый внешний блок, который имеет первую часть и противолежащую вторую часть для приема между ними части тела субъекта. Первый и второй ультразвуковые пьезоэлементы установлены соответственно на первой и второй частях и содержат покрывающие их соответственно первую и вторую мембраны для измерения уровней содержания глюкозы с использованием ультразвука. Первая и вторая мембраны образуют соответственно первую и вторую обкладки конденсатора, к которым подключено автоколебательное средство для измерения уровней содержания глюкозы с использованием электромагнитных измерений. Нагреватель и тепловой датчик установлены на первой части и отделены от первого ультразвукового пьезоэлемента для измерения уровней содержания глюкозы посредством тепловых характеристик. Применение изобретения позволит повысить точность измерения уровня глюкозы за счет комбинации ультразвукового, электромагнитного и теплового способов измерения. 7 з.п. ф-лы, 17 ил.

Формула изобретения RU 2 532 498 C2

1. Устройство для неинвазивного измерения уровня содержания глюкозы в субъекте, содержащее:
единый внешний блок, имеющий первую часть и противолежащую вторую часть, конфигурированные для приема между ними части тела субъекта;
а) первый ультразвуковой пьезоэлемент, установленный на первой части, и второй ультразвуковой пьезоэлемент, установленный на противолежащей второй части упомянутого внешнего блока, а также первую мембрану, покрывающую первый ультразвуковой пьезоэлемент, и вторую мембрану, покрывающую второй ультразвуковой пьезоэлемент, для измерения уровней содержания глюкозы с использованием ультразвука;
б) при этом первая мембрана и вторая мембрана образуют соответствующие первую и вторую обкладки конденсатора, к которым подключено автоколебательное средство для измерения уровней содержания глюкозы с использованием электромагнитных измерений; и
с) нагреватель и тепловой датчик, оба установленные на первой части и отделенные от первого ультразвукового пьезоэлемента, для измерения уровней содержания глюкозы посредством тепловых характеристик.

2. Устройство по п.1, в котором упомянутые ультразвуковые пьезоэлементы, обкладки конденсатора, нагреватель и тепловой датчик находятся в пределах упомянутого внешнего блока.

3. Устройство по п.2, также содержащее основной блок для управления измерениями, приема значений уровня глюкозы от внешнего блока и вычисления комбинации упомянутых значений уровня содержания глюкозы с весами для формирования точного показания уровня содержания глюкозы, а также средство для электрического соединения упомянутых основного блока и внешнего блока.

4. Устройство по п.3, в котором упомянутые ультразвуковые пьезоэлементы включают передатчик и приемник.

5. Устройство по п.2, в котором упомянутый внешний блок дополнительно содержит средство для определения расстояния между упомянутой первой частью и упомянутой противолежащей второй частью.

6. Устройство по п.5, в котором упомянутое средство для определения расстояния содержит магнит и датчик.

7. Устройство по п.5, в котором упомянутый внешний блок дополнительно содержит регулировочный винт для регулировки расстояния между упомянутой первой частью и упомянутой противолежащей второй частью.

8. Устройство по п.2, в котором упомянутый внешний блок дополнительно содержит датчик температуры окружающей среды.

Документы, цитированные в отчете о поиске Патент 2014 года RU2532498C2

УСТРОЙСТВО ДЛЯ НЕИНВАЗИВНОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГЛЮКОЗЫ В КРОВИ 2004
  • Егошин Александр Валерьевич
  • Музыря Олег Игоревич
  • Моторин Виктор Николаевич
  • Фролов Александр Михайлович
RU2279250C2
US 5119819 A, 09.06.1992
US 3085566 A, 16.04.1963
US 5944179 A, 31.08.1999
US 2009105605 A1, 23.04.2009
US 6405069 B1, 11.06.2002
US 6517482 B1, 11.02.2003
US 2010049007 A1, 25.02.2010
US 2004111045 A1, 10.06.2004
US 5395033 A, 07.03.1995

RU 2 532 498 C2

Авторы

Гал Авнер

Рэйхмэн Александер М.

Наидис Юджин

Майзель Юлия

Клионский Александер

Дибер Анатолий

Даты

2014-11-10Публикация

2011-04-26Подача