СПОСОБ ОКИСЛИТЕЛЬНОЙ СТАБИЛИЗАЦИИ ВОЛОКОН ИЗ ПОЛИАКРИЛОНИТРИЛА, НАПОЛНЕННЫХ УГЛЕРОДНЫМИ НАНОЧАСТИЦАМИ Российский патент 2014 года по МПК D01F9/22 B82B1/00 D01F1/10 D01F11/04 

Описание патента на изобретение RU2535797C1

Предлагаемое изобретение относится к области химии, а именно к способам окислительной стабилизации волокон из полиакрилонитрила, в том числе для использования как полупродукта для последующего получения углеродных волокнистых материалов для применения в качестве теплоизоляции печей инертной среды.

Из уровня техники известен способ получения огнестойкого полиакрилонитрильного волокна для изготовления текстильных материалов, стадия окислительной стабилизации которого проходит по четырехступенчатому режиму в диапазонах 150-190°С, 200-215°С, 220-240°С, 250-280°С в течение 90-120 минут.

Недостатком данного способа является сложная технология, включающая 4 ступени процесса, а также высокая конечная температура окислительной стабилизации - 280°С [Патент РФ 2258104 C1, D01F 6/18, 11/16, C09K 21/14. Способ получения огнестойкого полиакрилонитрильного волокна для изготовления текстильных материалов, 10.08. 2005].

Наиболее близким к заявленному является способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными нанотрубками (углеродными наночастицами), при котором окислительную стабилизацию волокон, содержащих 5 и 10 масс.% углеродных нанотрубок (углеродных наночастиц), проводят в воздушной среде при постоянной температуре 250°С в течение 10 часов [Min Byung G. Oxidative stabilization of PAN/SWNT composite fiber / Byung G. Min, T.V. Sreekumar, Tetsuya Uchida [et al.] // Carbon. - 2005. - 43. - P.599-604].

Недостатком данного способа является большое общее время процесса окислительной стабилизации - 10 часов.

Предназначение прототипа заключается в использовании волокон из полиакрилонитрила, наполненных углеродными нанотрубками (углеродными наночастицами), после проведения окислительной стабилизации, для получения углеродных волокон с высокой прочностью.

Техническим результатом заявленного изобретения является полное проведение процесса окислительной стабилизации волокон из полиакрилонитрила, наполненных техническим углеродом (углеродными наночастицами), а также устранение указанных недостатков, а именно упрощение технологии за счет уменьшения времени проведения процесса, обусловленное совместным участием в процессе окислительной стабилизации кислорода воздуха, а также кислорода, находящегося на поверхности технического углерода, введенного в волокна из полиакрилонитрила, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды.

Поставленная задача достигается тем, что в способе окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами, сформированные волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2-10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, для проведения окислительной стабилизации подвергают термообработке в воздушной среде при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.

Существенным отличием является проведение окислительной стабилизации волокон из полиакрилонитрила, наполненных техническим углеродом, при этом содержание технического углерода в волокнах, не прошедших окислительную стабилизацию, составляет 0,2-10%, а поверхность технического углерода содержит кислород в количестве не менее 4,8 атомных %, путем термообработки в воздушной среде, при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.

Заявляемый способ осуществляется следующим образом.

В прядильный раствор полиакрилонитрила вводят технический углерод. Процесс введения наночастиц в прядильный раствор широко описан в литературе, в том числе см. прототип, где осуществляется введение углеродных нанотрубок в прядильный раствор.

Из прядильного раствора формуют волокно из полиакрилонитрила с линейной плотностью 0,2-2,1 текс, наполненное техническим углеродом, при этом содержание технического углерода составляет 0,2-10%. Используют технический углерод, содержащий на своей поверхности не менее 4,8 атомных % кислорода, что определяют по данным рентгенофотоэлектронной спектроскопии, анализируя фотоэлектронную линию кислорода на спектрах высокого разрешения. Технический углерод имеет аморфную структуру с размером частиц по данным сканирующей электронной микроскопии 20-80 нм, то есть лежащим в нанодиапазоне. Частицы образуют агломераты размером 100-200 нм. Такая структура обладает меньшей теплопроводностью по сравнению с такими углеродными материалами, используемыми для теплоизоляции печей, как углеродные волокна, графит, имеющими кристаллическую графитоподобную структуру.

Затем волокно из полиакрилонитрила, наполненное техническим углеродом, подвергают окислительной стабилизации. Волокно заправляют в нагретую до 180°С трубчатую печь. Процесс проводят в одну стадию при нагреве волокна от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.

Для оценки полноты прохождения процесса окислительной стабилизации используют известный метод [Sudhakar Jagannathan, Han Gi Chae, Rahul Jain, Satish Kumar. Structure and electrochemical properties of activated polyacrylonitrile based carbon containing carbon nanotubes. Journal of Power Sources 2008; 185:676-84], основанный на экстракции полиакрилонитрила, не прошедшего окислительную стабилизацию, в диметилформамиде при температуре 150°С в течение 6 часов.

Метод экстракции полиакрилонитрила, не прошедшего окислительную стабилизацию, в диметилформамиде при температуре 150°С в течение 6 часов показывает полное прохождение процесса окислительной стабилизации.

Таблица 1 Экспериментальные результаты № п/п Содержание наночастиц % Содержание кислорода на поверхности наночастиц, ат.% Прекурсор для получения углеродных волокон Температура, °С Скорость подъема температуры, °С в минуту Время проведения окислительной стабилизации, мин Потеря массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов, % начальная максимальная 1 0,2 4,8 Полиакрилонитрил 180 230 0,5 110 0 2 5 4,8 Полиакрилонитрил 180 230 0,5 110 0 3 10 4,8 Полиакрилонитрил 180 230 0,5 110 0 4 5 5 Полиакрилонитрил 180 230 0,5 100 0 5 10 5,2 Полиакрилонитрил 180 230 0,5 90 0 Прототип 5 Данные не приведены Полиакрилонитрил 250 250 - 600 Данные не приведены Прототип 10 Данные не приведены Полиакрилонитрил 250 250 - 600 Данные не приведены

Пример 1.

Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 0,2% технического углерода, на поверхности которого содержится 4,8 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 110 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Пример 2.

Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 5% технического углерода, на поверхности которого содержится 4,8 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 110 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Пример 3.

Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 10% технического углерода, на поверхности которого содержится 4,8 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 110 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Пример 4.

Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 5% технического углерода, на поверхности которого содержится 5 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 100 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Пример 5.

Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 10% технического углерода, на поверхности которого содержится 5,2 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 90 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Использование технического углерода, на поверхности которого содержится менее 4,8 атомных % кислорода, существенно увеличивает время полного прохождения окислительной стабилизации, так как снижается количество кислорода, дополнительно привносимого с поверхности технического углерода в реакционную зону.

Использование технического углерода, на поверхности которого содержится не менее 4,8 атомных % кислорода, уменьшает время полного прохождения окислительной стабилизации, так как в зону реакции привносится дополнительный кислород, содержащийся на их поверхности, который снижает роль диффузионного фактора и увеличивает скорость прохождения окислительной стабилизации.

Использование технического углерода, на поверхности которого содержится более 5,2 атомных % кислорода, нецелесообразно, так как дополнительно не уменьшает время полного прохождения окислительной стабилизации.

Уменьшение содержания технического углерода менее 0,2% приводит к увеличению времени полного прохождения окислительной стабилизации, так как снижается количество кислорода, дополнительно привносимого с поверхности технического углерода в реакционную зону.

Увеличение содержания технического углерода от 0,2 до 10% привносит в зону реакции дополнительный кислород, содержащийся на их поверхности, который снижает роль диффузионного фактора и увеличивает скорость прохождения окислительной стабилизации. Кроме того, теплопроводность технического углерода ниже теплопроводности углеродных волокон на основе полиакрилонитрила, следовательно, теплоизоляционные свойства углеродного материала на основе таких волокон лучше, чем у углеродного материала на основе волокон из полиакрилонитрила, не содержащих технический углерод.

Увеличение содержания технического углерода более 10% нецелесообразно, так как не оказывает ускорения проведения окислительной стабилизации. Вместе с тем, высокое, более 10%, содержание технического углерода не позволяет получить из волокон углеродный материал с прочностными характеристиками, достаточными для использования такого материала в качестве теплоизоляции печей инертной среды.

Уменьшение начальной температуры окислительной стабилизации меньше 180°С не позволяет полностью провести процесс окислительной стабилизации за то же время. Это может быть определено по увеличению потери массы волокна после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Увеличение конечной температуры окислительной стабилизации выше 230°С при том же времени окислительной стабилизации не приводит к дополнительному улучшению прочностных показателей и нецелесообразно, так как температуры 230°С достаточно для полного прохождения окислительной стабилизации, что подтверждается отсутствием потери массы волокна после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Уменьшение времени проведения окислительной стабилизации меньше 90 минут при той же температуре не позволяет полностью провести процесс окислительной стабилизации. Это может быть определено по увеличению потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Увеличение времени проведения окислительной стабилизации больше 110 минут при той же температуре нецелесообразно, так как данного времени достаточно для полного прохождения окислительной стабилизации, что подтверждается отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.

Таким образом, был достигнут технический результат заявленного изобретения, заключающийся в полном проведении процесса окислительной стабилизации волокон из полиакрилонитрила, наполненных техническим углеродом (углеродными наночастицами), а также устранении указанных недостатков, а именно упрощении технологии за счет уменьшения времени проведения процесса, обусловленном совместным участием в процессе окислительной стабилизации кислорода воздуха, а также кислорода, находящегося на поверхности технического углерода, введенного в волокна из полиакрилонитрила, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды.

Из уровня техники известен аналог по назначению, представляющий собой волокнистый материал в виде углеродного войлока. Углеродный войлок получают из пековых волокон, он обладает теплоизоляционными свойствами, особенно в диапазоне высоких температур до 2800°С [European Patent 0473073 A1, D04H 1/42 Carbon fiber felting material and process for producing the same, 04.03.1992].

Недостатком данного аналога является использование углеродного волокнистого материала из пековых волокон, так как такие волокна обладают большей теплопроводностью, по сравнению с углеродными волокнами из полиакрилонитрила, равной 1 ккал/(м·ч·°С) при 2200°С, что соответствует ~ 1,16 Вт/(м·К).

Из уровня техники известен аналог по назначению, представляющий собой волокнистый материал в виде углеродного войлока. Углеродный войлок получают из гидратцеллюлозных волокон [Патент РФ 2100500 С1, D04H 3/10, D01F 9/16. Нетканый углеродный материал, 27.12.1997].

Углеродные волокна, полученные из гидратцеллюлозных волокон, широко применяются в качестве теплоизоляции печей. Вместе с тем, углеродные волокна из гидратцеллюлозы обладают худшими физико-механическими свойствами, чем углеродные волокна из полиакрилонитрила или пеков.

На основе волокна из полиакрилонитрила, наполненного техническим углеродом, прошедшего окислительную стабилизацию, готовят иглопробивным способом нетканый материал, затем его подвергают карбонизации и графитации, при этом температура карбонизации не менее 1000°С, а графитации - 2500°С. В результате получают углеродный нетканый материал с теплопроводностью при 2000°С 0,36-0,55 Вт/(м·К) и прочностью в продольном направлении не менее 200 Н/5 см, который используют в качестве теплоизоляции печей инертной среды.

Похожие патенты RU2535797C1

название год авторы номер документа
СПОСОБ ОКИСЛИТЕЛЬНОЙ СТАБИЛИЗАЦИИ ВОЛОКОН ИЗ ПОЛИАКРИЛОНИТРИЛА, НАПОЛНЕННЫХ УГЛЕРОДНЫМИ НАНОТРУБКАМИ 2013
  • Сальникова Полина Юрьевна
  • Житенева Дарья Александровна
  • Лысенко Александр Александрович
  • Лысенко Владимир Александрович
  • Гладунова Ольга Игоревна
  • Якобук Анатолий Алексеевич
  • Сазанов Юрий Николаевич
  • Асташкина Ольга Владимировна
  • Перминов Ярослав Олегович
  • Кузнецов Андрей Юрьевич
RU2534779C1
МАТЕРИАЛ ДЛЯ УГЛЕРОДНОГО ЭЛЕКТРОДА 2011
  • Лысенко Владимир Александрович
  • Сальникова Полина Юрьевна
  • Житенёва Дарья Александровна
  • Лысенко Александр Александрович
  • Асташкина Ольга Владимировна
  • Иванов Олег Михайлович
RU2480539C2
МАТЕРИАЛ ДЛЯ УГЛЕРОДНОГО ЭЛЕКТРОДА 2011
  • Лысенко Владимир Александрович
  • Сальникова Полина Юрьевна
  • Житенёва Дарья Александровна
  • Лысенко Александр Александрович
  • Иванов Олег Михайлович
  • Асташкина Ольга Владимировна
RU2480538C2
МАТЕРИАЛ ДЛЯ УГЛЕРОДНОГО ЭЛЕКТРОДА 2011
  • Лысенко Владимир Александрович
  • Сальникова Полина Юрьевна
  • Житенёва Дарья Александровна
  • Лысенко Александр Александрович
  • Асташкина Ольга Владимировна
  • Иванов Олег Михайлович
RU2482574C2
МАТЕРИАЛ ДЛЯ УГЛЕРОДНОГО ЭЛЕКТРОДА 2011
  • Лысенко Владимир Александрович
  • Сальникова Полина Юрьевна
  • Житенёва Дарья Александровна
  • Лысенко Александр Александрович
  • Иванов Олег Михайлович
  • Асташкина Ольга Владимировна
RU2482575C2
ВЫСОКОТЕМПЕРАТУРНАЯ СТАБИЛИЗАЦИЯ ПЕКОВЫХ ВОЛОКОН ПРИ НИЗКОЙ КОНЦЕНТРАЦИИ ОКИСЛИТЕЛЯ 1998
  • Циммерман Андреа К.
  • Роджерс Джон А.
  • Роумайн Эрнест Х.
  • Макконей Джеймз Р.
  • Дейвис Лорита
RU2198969C2
ЭЛЕКТРОПРОВОДЯЩЕЕ КОМПОЗИТНОЕ ВОЛОКНО И СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2022
  • Москалюк Ольга Андреевна
  • Кириченко Сергей Олегович
  • Юдин Владимир Евгеньевич
  • Цобкалло Екатерина Сергеевна
  • Погребняков Павел Викторович
  • Голдаев Алексей Николаевич
RU2790823C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО ВОЛОКНИСТОГО ЭЛЕКТРОПРОВОДЯЩЕГО МАТЕРИАЛА И МАТЕРИАЛ НА ЕГО ОСНОВЕ 2022
  • Лысенко Александр Александрович
  • Асташкина Ольга Владимировна
  • Марценюк Вадим Владимирович
  • Вилачева Юлия Юрьевна
  • Тимофеев Сергей Васильевич
  • Фоменко Юлия Алексеевна
  • Пименова Алина Вячеславовна
RU2804329C1
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ ИЗ ГИДРАТЦЕЛЛЮЛОЗЫ УГЛЕРОДНОГО ВОЛОКНА В ВИДЕ ОДНОНАПРАВЛЕННОГО ЖГУТА 2010
  • Карасев Юрий Васильевич
  • Лазарев Михаил Николаевич
  • Моторин Сергей Васильевич
  • Озолин Александр Александрович
RU2429316C1
СПОСОБ СИНТЕЗА НАНОКОМПОЗИТА CoNi/C НА ОСНОВЕ ПОЛИАКРИЛОНИТРИЛА 2014
  • Кожитов Лев Васильевич
  • Муратов Дмитрий Геннадьевич
  • Костишин Владимир Григорьевич
  • Якушко Егор Владимирович
  • Савченко Александр Григорьевич
  • Щетинин Игорь Викторович
  • Попкова Алена Васильевна
RU2558887C1

Реферат патента 2014 года СПОСОБ ОКИСЛИТЕЛЬНОЙ СТАБИЛИЗАЦИИ ВОЛОКОН ИЗ ПОЛИАКРИЛОНИТРИЛА, НАПОЛНЕННЫХ УГЛЕРОДНЫМИ НАНОЧАСТИЦАМИ

Изобретение относится к области химии и касается способа окислительной стабилизации волокон из полиакрилонитрила (ПАН), наполненных углеродными наночастицами. Сформированные волокна подвергают термообработке в воздушной среде при нагреве. Волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2 - 10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, подвергают окислительной стабилизации при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут. Изобретение обеспечивает полное проведение процесса окислительной стабилизации волокон из ПАН, наполненных техническим углеродом (углеродными наночастицами), а также упрощение технологии за счет уменьшения времени проведения процесса, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды. 1 табл., 5 пр.

Формула изобретения RU 2 535 797 C1

Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами, в котором сформированные волокна подвергают термообработке в воздушной среде при нагреве, отличающийся тем, что волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2-10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, подвергают окислительной стабилизации при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.

Документы, цитированные в отчете о поиске Патент 2014 года RU2535797C1

MIN BYUNG G
et al " Oxidative stabilization of PAN/SWNT composite fiber", Carbon, 2005, N 43
СПОСОБ ПОЛУЧЕНИЯ ОГНЕСТОЙКОГО ПОЛИАКРИЛОНИТРИЛЬНОГО ВОЛОКНА ДЛЯ ИЗГОТОВЛЕНИЯ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ 2004
  • Казаков М.Е.
  • Азарова М.Т.
RU2258104C1
СПОСОБ ПОЛУЧЕНИЯ НЕПРЕРЫВНОГО УГЛЕРОДНОГО ВОЛОКНА С ВЫСОКИМ МОДУЛЕМ УПРУГОСТИ 2007
  • Подкопаев Сергей Александрович
  • Тюменцев Василий Александрович
RU2330906C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОГО И ВЫСОКОМОДУЛЬНОГО УГЛЕРОДНОГО ВОЛОКНА 2007
  • Харитонов Андрей Алексеевич
RU2343235C1
EP 01845179 A1, 17.10.2007

RU 2 535 797 C1

Авторы

Сальникова Полина Юрьевна

Житенева Дарья Александровна

Лысенко Александр Александрович

Лысенко Владимир Александрович

Гладунова Ольга Игоревна

Якобук Анатолий Алексеевич

Сазанов Юрий Николаевич

Асташкина Ольга Владимировна

Перминов Ярослав Олегович

Кузнецов Андрей Юрьевич

Даты

2014-12-20Публикация

2013-04-25Подача