СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНО-ДОПУСТИМОЙ КОНЦЕНТРАЦИИ ТЯЖЕЛЫХ МЕТАЛЛОВ В КРОВИ ДЕТЕЙ ПРИ МНОГОСРЕДОВОЙ ЭКСПОЗИЦИИ Российский патент 2014 года по МПК G01N33/50 

Описание патента на изобретение RU2536268C1

Изобретение относится к области медицины и предназначено для обоснования предельно допустимых концентраций (ПДК) тяжелых металлов в крови детей, проживающих в условиях загрязненной среды обитания, по критериям риска для здоровья при хронической многосредовой экспозиции. Полученные результаты могут быть использованы в целях повышения эффективности планирования контрольно-надзорных мероприятий за объектами внешней среды и принятия управленческих решений по обеспечению санитарно-эпидемиологической безопасности населения и защиты прав потребителей.

Известен способ определения норматива предельно допустимой концентрации загрязняющих веществ в водных объектах (Патент РФ №2480747), который включает анализ проб воды, взятых по створам, расположенным на участках с подтвержденным экологическим благополучием, определение средней выборочной концентрации загрязняющих веществ, при этом определение предельно допустимой концентрации загрязняющих веществ проводят с учетом минимума загрязнения по формуле:

где Cn - предельно допустимая концентрация загрязняющих веществ;

Cф - фоновые концентрации химических веществ в водотоках;

С ¯ с ф - средняя концентрация вещества;

Sсф - среднее квадратическое отклонение концентрации;

tst - коэффициент Стьюдента при P=0,95;

n - число отобранных проб на участке.

Указанный известный способ обеспечивает повышение точности определения.

Однако данный способ не предназначен для определения ПДК в крови ребенка.

Также известны ряд способов определения ПДК тяжелых металлов в воздухе, а именно: Способ определения ПДК соединений металлов в атмосферном воздухе населенных мест (Авт. св. СССР №1660681) и Способ определения ПДК аэрозоля пятиокиси ванадия в атмосферном воздухе (Авт. Св. СССР №1140789).

Согласно первому способу эксперимент проводят на двух группах беременных крыс, одна из которых служит контролем, а другая подвергается воздействию токсического агента в концентрации, значение которой на порядок выше ориентировочного безопасного уровня его воздействия, определяют биохимические показатели в сыворотке крови белых крыс, рассчитывают парную энтропию средних величин показателей в опытной и контрольной группах, находят среднее значение парной энтропии показателей и определяют ПДК по математическому выражению.

Согласно второму способу проводят ингаляционное воздействие на лабораторных животных и исследуют биохимические показатели в биологическом материале, причем на животное воздействуют 3-5 концентрациями пятиокиси ванадия, дополнительно определяют в трупных органах одновременно на всех группах животных липиды, белки и ферменты и по величине их изменений определяют ПДК.

Однако недостатком обоих указанных способов является невозможность их применения для определения ПДК тяжелых металлов в крови детей, т.к. предусматривается воздействие на организм заведомо высокой концентрацией такого металла, что может нанести непоправимый вред здоровью ребенка.

Из уровня техники не были выявлены источники информации об изобретениях, полностью релевантных заявляемому техническому объекту, в результате чего отсутствует прототип.

Технический результат, достигаемый предлагаемым изобретением, заключается в обеспечении возможности определения предельно допустимой концентрации тяжелых металлов в крови детей при многосредовой экспозиции с использованием щадящих методов, исключающих вред здоровью ребенка.

Указанный технический результат достигается предлагаемым способом определения предельно допустимой концентрации тяжелых металлов в крови детей при многосредовой экспозиции, согласно которому выбирают экологически неблагополучную территорию с высокой нагрузкой тяжелых металлов среды обитания с критерием индекса опасности для здоровья населения больше 1; с указанной территории производят репрезентативную выборку детей для исследования - основная группа, с использованием биологических, социально-бытовых и гигиенических критериев; с использованием тех же критериев производят репрезентативную выборку детей в контрольную группу из благополучной в экологическом плане территории, на указанных территориях с использованием годовой экспозиции осуществляют количественную оценку хронической экспозиции исследуемого тяжелого металла по установлению среднесуточной концентрации его в объектах внешней среды, затем с использованием указанных значений среднесуточной концентрации тяжелого металла в объектах внешней среды рассчитывают для детей обеих групп усредненную на годовую экспозицию суммарную среднюю суточную дозу тяжелого металла, поступающего из различных источников в организм ребенка, определяя одновременно при этом ведущий путь поступления и приоритетную среду, далее у детей один раз в три месяца в течение одного года производят отбор пробы крови для установления следующих параметров: для определения содержания исследуемого тяжелого металла и для определения уровня биохимических показателей плазмы и сыворотки крови, которые характеризуют ответные реакции в виде фактического или потенциального нарушения здоровья - маркеры ответа, под воздействием этого тяжелого металла, поступающего из приоритетной среды воздействия; затем из полученных четырех результатов в течение года рассчитывают среднюю концентрацию исследуемого тяжелого металла в крови и сравнивают ее с референтным уровнем для этого тяжелого металла, используя при этом двухвыборочный критерий Стьюдента с уровнем значимости 0,05, устанавливая при этом адекватности выбора детей основной и контрольной групп; при этом указанным критерием адекватности для контрольной группы детей является отсутствие достоверных различий средней концентрации исследуемого металла в крови с референтным уровнем, а для основной группы детей - наличие достоверных различий средней концентрации исследуемого металла в крови со средней концентрацией этого металла в крови детей контрольной группы; далее методом математического моделирования для детей каждой группы устанавливают связь между экспозицией - суммарной средней суточной дозой исследуемого металла, поступающего в организм от объектов внешней среды, и маркером экспозиции - средней концентрацией тяжелого металла в крови, определяя по наличию достоверной связи с экспозицией обоснованность выбранного маркера экспозиции; затем с использованием технологии «скользящего окна» осуществляют обоснование выбранных маркеров ответа путем установления и оценки зависимости вероятности отклонения ранее установленных биохимических показателей плазмы и сыворотки крови у детей основной группы относительной аналогичных показателей у детей контрольной группы, и от физиологической нормы; далее методом, основанным на анализе отношения шансов, определяют предельно допустимую концентрацию маркера экспозиции и соответствующий ей маркер ответа, исходя из условия, при котором показатель отношения шансов, характеризующий силу связи между воздействием тяжелого металла и ответом организма, будет больше или равен единице, для этого для каждого наблюдения формируют таблицу данных: значение средних концентраций исследуемого металла в крови и значений маркеров ответа для каждого наблюдения и производят условное деление данных на две части: ниже текущего наблюдения - уровня средней концентрации тяжелого металла в крови и выше текущего наблюдения; далее для обеих частей рассчитывают величину, характеризующую вероятность отклонения маркера ответа основной группы от маркера ответа в контрольной группе, как отношение числа наблюдений, отличающихся от контроля, к общему числу наблюдений, а показатель отношения шансов OR для каждой среднесуточной концентрации исследуемого металла в крови определяют из соотношения:

где i - индекс, отражающий номер наблюдения;

p i - вероятность отклонения маркера ответа основной группы от маркера ответа в контрольной группе в таблице в области ниже текущего наблюдения;

p i + - вероятность отклонения маркера ответа основной группы от маркера ответа в контрольной группе в таблице в области выше текущего наблюдения;

причем достоверность рассчитанного показателя отношения шансов оценивают по 95% доверительному интервалу, в пределах которого находится истинное значение показателя отношения шансов, а связь признают достоверно установленной при нижней границе доверительного интервала больше или равного 1; далее строят модель зависимости между уровнем маркера экспозиции и указанным показателем отношения шансов, причем построение модели осуществляют на основании данных о средней концентрации исследуемого металла в крови и данных о соответствующем значении показателя отношения шансов отклонения маркера ответа в основной группе относительно значения маркера ответа в контрольной группе по каждому наблюдению; причем для установления адекватности указанной модели, а значит - достоверности полученных данных, используют процедуру дисперсионного анализа, основанную на расчете критерия Фишера и коэффициента детерминации, принимая во внимание, что различия считают статистически значимыми при p≤0,05; далее производят расчет реперной максимальной недействующей концентрации тяжелого металла в крови x0 для каждого маркера ответа по формуле:

где a 1, a 0 - параметры модели,

а также осуществляют определение при построении указанной модели 95%-ных доверительных границ точечных оценок реперных концентраций исследуемого металла в крови, причем в качестве реперной концентрации исследуемого тяжелого металла в крови принимается значение верхней 95%-ной доверительной границы для каждого маркера ответа; а в качестве предельно допустимой концентрации исследуемого тяжелого металла в крови детей принимают наименьшую концентрацию из имеющегося ряда 95%-ных верхних доверительных границ реперных концентраций металла в крови для каждого маркера ответа.

Поставленный технический результат достигается за счет следующего.

Для однозначного понимания используемых терминов и определений настоящего изобретения ниже приведена их суть:

Маркер экспозиции - экзогенное химическое вещество или его метаболит, количество которого определяется в биологических средах организма.

Маркер ответа - показатель, количественно характеризующий биохимическое, физиологическое, поведенческое или иное изменение в организме, от степени выраженности которого определяется фактическое или потенциальное нарушение здоровья или развитие болезни.

Референтный уровень - суточное воздействие химического вещества в течение всей жизни, которое устанавливается с учетом всех имеющихся современных научных данных и, вероятно, не приводит к возникновению неприемлемого риска для здоровья чувствительных групп населения.

Внешняя среда обитания человека - совокупность объектов, явлений и факторов окружающей среды, определяющая условия жизнедеятельности человека.

Среднесуточная доза/концентрация - потенциальная суточная доза/концентрация, усредненная на весь период воздействия химического вещества (в изобртении - на годовую экспозицию).

Экспозиция (уровень воздействия) - контакт организма (рецептора) с химическим, физическим или биологическим агентом.

Предельно допустимая концентрация (ПДК) тяжелых металлов в крови детей - максимальная допустимая концентрация тяжелых металлов в единице объема крови детей, обусловленная многосредовой хронической экспозицией, которая при ежедневном воздействии в течение неограниченно продолжительного времени не вызывает достоверного (с вероятностью p≤0,05) изменения ответных реакций организма, установленных по критериям риска для здоровья.

Благодаря тому, что при реализации предлагаемого способа выбирают экологически неблагополучный регион с высокой нагрузкой химических факторов среды обитания с критерием индекса опасности HI для здоровья населения больше 1 (критерий индекса HI опасности для здоровья населения определяют по «Руководству по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду» Р 2.1.10.1920-04), обеспечивается определение селитебных территорий, на которых у детского населения развитие нарушений состояния здоровья от воздействия тяжелых металлов является наиболее вероятным.

Использование при отборе детей в основную и контрольную группу нескольких критериев: биологических, гигиенических, социально-бытовых, позволяет сформировать максимально репрезентативные выборки, основным фактором различия в которых является наличие многосредовой экспозиции тяжелых металлов.

Осуществление количественной оценки хронической экспозиции исследуемого тяжелого металла, в процессе которой устанавливают количественное поступление металла в организм детей различными путями: пероральным, ингаляционным, накожным, в результате контакта с различными объектами внешней среды (вода, воздух, почва, продукты питания), необходимо для того, чтобы корректно рассчитать значение средней суточной дозы исследуемого металла.

Выполнение расчета суммарной средней суточной дозы, усредненной на годовую экспозицию, при различных путях поступления: ингаляционном, пероральном с питьевой водой, продуктами питания, исследуемого тяжелого металла в организм с помощью стандартных значений факторов экспозиции и конкретных значений массы тела и возраста детей, входящих в основную и контрольную группу, позволяет установить уровень воздействия многосредовой экспозиции исследуемого металла при хроническом воздействии с учетом времени воздействия, индивидуальных особенностей детей и приоритетного пути поступления, что повышает информативность предлагаемого способа. Указанный расчет выполняется по формулам, представленным в приложении 3 Руководства по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих среду обитания (Р.2.1.10.1920-04).

Проведение сравнительного анализа среднесуточных доз исследуемого металла для детей основной и контрольной групп, установление при этом вклада каждого пути поступления исследуемого металла в суммарную среднюю суточную дозу, необходимо для определения ведущего пути поступления и приоритетной среды экспозиции, для определения поражаемых органов и систем при каждом пути поступления и при комплексном поступлении одновременно несколькими путями. Благодаря этому обеспечивается практически полный учет приоритетных химических факторов риска для нарушения здоровья ребенка, что позволяет учесть их негативное влияние и повысить достоверность определения.

Благодаря использованию в качестве исследуемого материала пробы венозной крови обеспечивается простота и надежность исследований, а также получение нужной информативности. Установление содержания химического контаминанта - тяжелого металла именно в крови обусловлено тем, что кровь является самой гомеостатичной средой (управляемость и регулируемость концентраций составляющих ее компонентов) и единственной, имеющей реферируемые константы (референтный уровень) в отношении техногенных химических веществ. А выполнение забора пробы крови у детей из основной и контрольной групп в течение 1 года с периодичностью 1 раз в 3 месяца и определение в ней содержания исследуемого металла позволяет количественно охарактеризовать его уровень и рассчитать среднюю концентрацию исследуемого тяжелого металла в крови, что делает способ более точным и достоверным.

Сопоставление полученной величины среднесуточной концентрации исследуемого металла в пробе крови по каждому наблюдению (у каждого ребенка в выборке) в опытной и контрольной группе с референтным уровнем (источником информации о значениях референтного уровня является «Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих среду обитания» Р.2.1.10.1920-04), используя при этом двухвыборочный критерий Стьюдента (t) с уровнем значимости 0,05, обеспечивает установление адекватности выбора детей основной и контрольной групп. При этом указанным критерием адекватности для контрольной группы детей является отсутствие достоверных различий средней концентрации исследуемого металла в крови с референтным уровнем, а для основной группы детей - наличие достоверных различий средней концентрации исследуемого металла в крови со средней концентрацией этого металла в крови детей контрольной группы,

Установление связи между экспозицией - суммарной средней суточной дозой исследуемого металла от внешних факторов и средней концентрацией тяжелого металла в крови, методом математического моделирования, обусловлено необходимостью расчета маркера экспозиции, свидетельствующего о наличии достоверной связи засвидетельствованной средней концентрации металла в крови с экспозицией, что повышает достоверность данного способа.

Обоснование маркеров ответа необходимо для того, чтобы установить степень негативного воздействия исследуемого металла на критические органы и системы. И выполнение этого обоснования путем установления и оценки зависимости вероятности отклонения указанных исследуемых лабораторных (биохимических) показателей ответных реакций у детей основной группы относительно аналогичного показателя у детей контрольной группы от средней концентрации исследуемого металла в крови (маркера экспозиции) с использованием технологии «скользящего окна» упрощает способ. Для этого для каждого значения концентрации исследуемого металла в крови (xi) производится расчет вероятности отклонения лабораторного (биохимического) показателя от значения в контроле (pi), вычисленной для диапазона («скользящего окна»):

xi-δ<x≤xi+δ,

где δ - ширина «скользящего окна», которая определяется из соотношения:

где N - общее число исследований для всей совокупности;

xmax - максимальная концентрации исследуемого металла в крови;

xmin - минимальная концентрации исследуемого металла в крови.

Оценка вероятности pi отклонения лабораторного (биохимического) показателя основной группы от контроля и от физиологической нормы производится по классической формуле вероятности:

где mi - число исследований по i-му лабораторному показателю, отклоняющихся от значения в контроле для диапазона xi-δ<x≤xi+δ;

ni - общее число исследований по i-му лабораторному показателю для диапазона xi-δ<x≤xi+δ.

Графическая иллюстрация процесса оценки вероятности отклонения лабораторного (биохимического) показателя от физиологической нормы с использованием скользящего окна» представлена на рисунке 1.

Оценка параметров зависимости вероятности отклонения лабораторного показателя, относительно физиологической нормы, от среднесуточной концентрации тяжелого металла в крови проводится методом построения логистической регрессионной модели:

где p - вероятность отклонения лабораторного показателя от физиологической нормы;

x - концентрация химического вещества в крови, мг/дм3;

b0, b1 - параметры математической модели.

Благодаря тому, что в крови у каждого ребенка из обеих групп определяют совокупность лабораторных (биохимических) показателей, характеризующих специфические и неспецифические ответные реакции организма, с учетом риска заболевания критических органов и систем при возможных путях поступления исследуемого металла в организм, обосновывается негативное воздействие исследуемого металла на критические органы.

Определение предельно допустимой концентрации маркера экспозиции осуществляется на основе процедуры анализа расчета отношения шансов, исходя из условия, при котором показатель отношения шансов OR, характеризующий силу связи между воздействием химического соединения и ответом организма, будет больше или равен единице. При этом для расчета показателя отношения шансов для каждого наблюдения сначала формируют таблицу данных: значение средних концентраций исследуемого металла в крови и значений маркеров ответа для каждого наблюдения (1…n), и в указанной таблице данных производят условное деление данных на две части: ниже текущего наблюдения - уровня средней концентрации исследуемого металла в крови и выше текущего наблюдения - уровня средней концентрации исследуемого металла в крови, для обоих частей рассчитывают величину, характеризующую вероятность отклонения маркера ответа от значения аналогичного лабораторного показателя в контрольной группе ( p i и p i + соответственно) как отношение числа наблюдений, отличающихся от контроля, к общему числу наблюдений.

А показатель отношения шансов для каждой средней концентрации исследуемого металла в крови определяют из соотношения:

где i - индекс, отражающий номер наблюдения.

Причем достоверность рассчитанного показателя отношения шансов оценивают по 95% доверительному интервалу, в пределах которого находится истинное значение показателя отношения шансов, а связь признают достоверно установленной при нижней границе доверительного интервала больше или равной 1.

Благодаря тому, что далее строится модель зависимости между уровнем маркера экспозиции и указанным показателем отношения шансов, причем построение модели осуществляют на основании данных о средней концентрации исследуемого металла в крови и данных о соответствующем значении показателя отношения шансов отклонения маркера ответа относительно значения показателя в контрольной группе по каждому наблюдению, обеспечивается достоверность полученной связи.

Причем для установления адекватности используемой модели, а значит - достоверности полученных данных используют процедуру дисперсионного анализа, основанную на расчете критерия Фишера (F) и коэффициента детерминации (R2), принимая во внимание, что различия считают статистически значимыми при p≤0,05.

Далее производят расчет реперной максимальной недействующей концентрации исследуемого металла в крови (x0) для каждого маркера ответа по формуле:

где a 1, a 0 - параметры модели,

а также осуществляют определение при построении указанной модели 95%-ных доверительных границ точечных оценок реперных концентраций исследуемого металла в крови, причем в качестве реперной концентрации исследуемого металла в крови принимается значение верхней 95%-ной доверительной границы для каждого маркера ответа, а в качестве предельно допустимой концентрации исследуемого металла в крови детей принимают наименьшую концентрацию из имеющегося ряда 95%-ных верхних доверительных границ реперных концентраций металла в крови для каждого маркера ответа.

Таким образом, достижение поставленного технического результата обеспечивается за счет совокупности всех признаков предлагаемого изобретения и исключение какого-либо приведет к невозможности реализации назначения способа.

Предлагаемый способ осуществляют следующим образом, реализуя его на конкретном примере:

1) Выбирают экологически неблагополучную территорию по высокой аэрогенной нагрузке тяжелыми металлами. В качестве такой территории был выбран г. Чусовой, характеризующийся наличием приоритетных компонентов выбросов промышленных предприятий - соединений марганца в атмосферном воздухе селитебных территорий. По результатам ранее проведенной процедуры оценки риска для здоровья населения на данной территории экспозиция металлов при аэрогенном воздействии формирует неприемлемый риск в отношении органов дыхания, центральной и вегетативной нервной системы (индекс опасности для здоровья HI=8-44 при допустимом уровне ≤1,0).

2) Формируют сопоставимые выборки детей на основании биологических критериев: I-II группа здоровья, которую устанавливают на основании результатов анализа медицинских карт (форма 26/У) и проведения клинического осмотра; физиологическое течение беременности и родов у матери; отсутствие патологии перинатального периода; отсутствие отягощенного наследственного анамнеза; весоростовые показатели по индексу Кетле, не выходящие за пределы ±15%; отсутствие острых инфекционных заболеваний не менее чем в течение 3 недель до начала исследования; индекс инфекционности 0,2-0,5; на основании социально-бытовых критериев: уровень дохода, семейный образ жизни, качества условий быта; родители детей, включенных в выборку, должны иметь среднее и высшее образование, что детерминирует семейный образ жизни как сопоставимый, средний уровень материальной обеспеченности, жилищные условия, соответствующие установленным гигиеническим нормативам; на основании гигиенических критериев: выборки отличаются наличием экспозиции марганца в атмосферном воздухе территории проживания детей исследуемой выборки и отсутствием на территории проживания выборки контрольной группы; по наличию общераспространенных соединений территории сопоставимы. В основную группу было отобрано 80 детей из организованного коллектива, проживающих на территории г. Чусовой. В качестве контрольной группы было отобрано 50 детей из организованного коллектива, проживающих на территории пгт Ильинский.

3) На выбранных территориях осуществляют количественную оценку хронической экспозиции исследуемого тяжелого металла с использованием годовой экспозиции по установлению средней суточной концентрации его в атмосферном воздухе и питьевой воде на основании материалов мониторинговых наблюдений, по данным натурных исследований. Средняя суточная концентрация марганца в атмосферном воздухе экологически неблагополучной территории составила 0,0011±0,0003 мг/м3 (1,1 доли ПДК), на территории сравнения - 0,00003±0,00001 мг/м3 (0,03 доли ПДК). Средняя суточная концентрация марганца в питьевой воде экологически неблагополучной территории составила 0,02±0,003 мг/м3 (0,2 доли ПДК), на территории сравнения - 0,01±0,002 мг/м3 (0,1 доли ПДК).

4) С использованием формулы, приведенной в приложении 3 Руководства по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих среду обитания (Р.2.1.10.1920-04), выполняют расчет суммарной средней суточной дозы тяжелого металла, поступающего от различных источников в организм детского населения. На экологически неблагополучной территории средняя суточная доза марганца при поступлении в организм с атмосферным воздухом составила 9,0·10-4 мг/(кг·день), с питьевой водой - 1,1·10-4 мг/(кг·день). Суммарная средняя суточная доза составила 0,001 мг/(кг·день), и приоритетным путем поступления является атмосферный воздух. На территории сравнения средняя суточная доза марганца при поступлении с атмосферным воздухом составила 2,9·10-5 мг/(кг·день), с питьевой водой - 5,5·10-5 мг/(кг·день). Суммарная средняя суточная доза 8,4·10-5 мг/(кг·день).

5) У детей из указанных групп проводят отбор венозной цельной крови в одну пробирку 1 раз в 3 месяца в течение 1 года (т.е. четыре раза в год) для определения содержания марганца в цельной крови. При осуществлении последнего отбора пробы крови используют три пробирки: первую - для определения содержания металла, вторую - для определения уровня биохимических показателей сыворотки крови, третью - для определения уровня биохимических показателей плазмы крови, перечень которых устанавливается с учетом выявленных поражаемых органов и систем, характерных для негативного воздействия исследуемого тяжелого металла марганца и приоритетного пути его поступления.

6) В цельной крови определяют уровень содержания марганца на атомно-абсорбционном спектрофотометре Perkin Elmer 3110 с использованием в качестве окислителя ацетилентно-воздушной смеси с детектированием в режиме пламенной атомизации.

В сыворотке крови с учетом критических органов при хроническом ингаляционном поступлении марганца определяют уровень гидроперекисей липидов, уровень иммуноглобулина E (IgE) общего, IgE специфических к марганцу, уровень активности супероксиддисмутазы цитоплазматической Cu/Zn-СОД, иммуноглобулинов G (IgG), A (IgA), циклического аденозинмонофосфата ц-АМФ, циклического глуанидинмонофосфата ц-ГМФ. В плазме крови определяют уровень малонового диальдегида (МДА), показателя антиоксидантной активности (АОА).

7) Рассчитывают среднюю концентрацию содержания марганца в крови детей в течение года (т.е. сумму четырех показателей, полученных в течение годы, делят на четыре). Полученные данные сравнивают с референтным уровнем. Полученные результаты представлены в таблице 1.

Данные, приведенные в таблице 1, указывают на обоснованность выборки детей основной и контрольной групп, т.к. у контрольной группы отсутствуют достоверные различия концентрации марганца в крови с референтным уровнем (p=0,065, т.е. больше 0,05), а у основной группы по сравнению с контрольной p=0,001, т.е. меньше 0,05.

8) Далее устанавливают достоверную связь между экспозицией - суммарной средней суточной дозой исследуемого металла, поступающего в организм от объектов внешней среды, и маркером экспозиции - средней концентрацией тяжелого металла в крови, определяя по наличию достоверной связи с экспозицией обоснованность выбранного маркера экспозиции, методом математического моделирования. Выявление и оценка параметров указанной зависимости позволили получить адекватные модели (F≥3,96, p≤0,05) зависимости между средней концентрацией марганца в крови от суммарной средней суточной дозы при ингаляционном и пероральном поступлении в организм (в диапазоне исследованных концентраций за одинаковый период наблюдений) (F=2055,12, R2=0,64, p=0,0001). Зависимость средней концентрации марганца в крови детей от суммарной средней суточной дозы марганца при хронической комплексной экспозиции на территории с размещением металлургического производства представлена на рисунке 2. Исходя из полученных данных, средняя концентрация марганца в крови детей основной группы принимается в качестве маркера экспозиции хронического воздействия марганца.

9) Для обоснования маркеров ответа выполняют лабораторное обследование детей основной и контрольных групп (через определение биохимических показателей плазму и сыворотки крови). Результаты представлены в таблице 2.

Анализ полученных результатов, приведенных в таблице 2, позволил установить повышение неспецифической чувствительности организма (сенсибилизация) по достоверному повышению в 1,3 раза среднего уровня IgE общего в сыворотке крови (103,2±15,6 МЕ/см3) относительно показателя у детей контрольной группы (79,4±4,38 МЕ/см3, p=0,001), в 94% случаев превышающее предел физиологической нормы. Установлена начальная активация процесса метаболического окисления по уровню гидроперекисей липидов в сыворотке крови (362,11±8,6 мкмоль/дм3), что в 1,2 раза превысило показатель у детей контрольной группы (301,7±5,23, p=0,02) и в 93% случаев превысило предел физиологической нормы. Данные отклонения показателей характеризуют развитие негативных эффектов - начальную сенсибилизацию и активацию метаболического окисления. Установлено изменение активности внутриклеточных регуляторных посредников по повышению ц-АМФ в сыворотке крови (9,2±0,24 мкмоль/дм3) в 1,2 раза относительно данного показателя в контрольной группе (7,73 мкмоль/дм3, p=0,005) и снижению ц-ГМФ в сыворотке крови (2,8±0,11 мкмоль/дм3) в 1,2 раза относительно показателя контрольной группы (3,35±0,14 мкмоль/дм3 p=0,005). Это свидетельствует об активации элементов симпатической регуляции на молекулярном уровне. Зарегистрировано достоверное превышение в 1,4 раза среднего уровня Cu/Zn СОД (102,4±2,42 нг/см3) в сыворотки крови относительно показателя контрольной группы (72,00±2,43 нг/см3). В 21% случаев данный показатель превысил значение физиологической нормы, что свидетельствует об активации антиоксидантного звена.

10) Выполняют процедуру анализа расчета отношения шансов, показателя, характеризующего силу связи «маркер экспозиции - маркер ответа неблагоприятного воздействия». Результаты представлены в таблице 3.

11) Строят модель зависимости между уровнем маркера экспозиции и установленным показателем отношения шансов с выполнением процедуры расчета максимальной недействующей средней концентрации металла в крови для каждого маркера ответа. Результаты представлены в таблице 4.

Из полученного ряда допустимых концентраций марганца в крови для каждого вероятного негативного ответа наименьшей концентрацией (по нижней 95%-ной доверительной границе) является 0,015 мг/дм3 (лимитирующий показатель - вероятность повышение иммуноглобулина E общего в сыворотке крови). Данная концентрация может быть рекомендована в качестве суточной ПДК марганца в крови детей для условий многосредового хронического воздействия.

Таким образом, предлагаемым способом обеспечивается достоверное определение предельно допустимой концентрации тяжелых металлов в крови детей. Знание этой информации позволит повысить эффективности комплекса санитарно-гигиенических мероприятий на территориях с размещением объектов металлургических и машиностроительных производств и позволит оценить реальную экспозицию населения.

Таблица 1 Средняя концентрация содержания марганца в крови детей в течение года Металл Группа Концентрация марганца (M±m), мг/дм3 Референтный уровень (RL), мг/дм3 Доли RL Достоверность различий (p≤0,05) с группой контроля с референтным уровнем контрольная 0,010±0,002 0,9 - 0,065 Марганец основная 0,042±0,006 0,011±0,002 3,8 0,001 0,0001

Таблица 2 Лабораторные (биохимические) показатели у детей с повышенным содержанием марганца в крови, p≤0,05 Структурный уровень Показатель Контрольная группа Группа основная Достоверность различий (p) Среднее значение и ошибка средней (M±m) Частота регистрации проб с отклонением от физиологической нормы, % Среднее значение и ошибка средней (M±m) Частота регистрации проб с отклонением от физиологической нормы, % ниже выше ниже выше Молекулярный ц-АМФ в сыворотке крови, пмоль/см3 9,28±0,24 0,0 8,0 7,73±0,73 6,8 9,0 0,01 ц-ГМФ в сыворотке крови, пмоль/см3 2,82±0,11 0,0 0,0 3,35±0,14 6,8 2,3 0,05 IgE общий в сыворотке крови, ME/см3 103,2±15,6 0,0 94,0 79,38±4,38 0,0 33,5 0,001 IgE спец. к марганцу в сыворотке крови, ME/см3 1,61±0,03 0,0 14,0 1,61±0,05 0,0 16 >0,05 Антиоксидантная активность плазмы крови, % 37,11±1,03 4,0 14,6 42,02±1,95 15,0 45,0 >0,05 Cu/Zn супероксиддисмутаза в сыворотке крови, нг/см3 102,36±2,42 0,0 21,0 72,0±2,43 0,0 12,3 0,001 Малоновый диальдегид плазмы, мкмоль/см3 1,84±0,15 0,0 14,0 2,59±0,11 25,0 0,0 >0,05 Гидроперекись липидов в сыворотке крови, мкмоль/дм3 362,11±8,61 0,0 93,0 301,7±5,23 19,3 19,3 0,02 IgG в сыворотке крови, г/дм3 12,53±0,21 2,0 3,0 10,22±0,25 13,1 18,5 >0,05 IgA в сыворотке крови, г/дм3 1,45±0,1 5,0 7,0 1,34±0,07 18,5 19,2 >0,05

Таблица 3 Показатель отношения шансов, характеризующий связь отклонения показателей маркера ответа со средней концентрацией марганца в крови детей Показатель маркера ответа Группа Средняя концентрация марганца в крови, мг/дм3 Показатель отношения шансов (OR) 95% доверительный интервал (ДИ) Понижение ц-АМФ в сыворотке крови контрольная 0,010±0,002 0,17 0,104÷0,34 основная 0,042±0,006 1,43 1,24÷1,90 Повышение ц-ГМФ в сыворотке крови контрольная 0,010±0,002 0,10 0,094÷0,11 основная 0,042±0,006 0,52 0,494÷0,56 Повышение IgE общего в сыворотке крови контрольная 0,010±0,002 0,57 0,554÷0,60 основная 0,042±0,006 2,17 2,044÷2,31 Повышение IgE спец. к марганцу в сыворотке крови контрольная 0,010±0,002 0,27 0,154÷0,35 основная 0,042±0,006 1,82 1,564÷2,45 понижение антиоксидантной активности плазмы крови контрольная 0,010±0,002 0,27 0,124÷0,42 основная 0,042±0,006 1,56 0,934÷1,83 Понижение Cu/Zn супероксиддисмутазы в сыворотке крови контрольная 0,010±0,002 0,30 0,284÷0,35 основная 0,042±0,006 0,66 0,624÷0,69 Повышение малонового диальдегида плазмы крови контрольная 0,010±0,002 0,36 0,054÷0,40 основная 0,042±0,006 1,45 1,244÷1,90 Повышение гидроперекисей липидов в сыворотке крови контрольная 0,010±0,002 0,82 0,754÷0,95 основная 0,042±0,006 1,10 1,054÷1,15

Таблица 4 Параметры моделей зависимости отношения шансов отклонения маркеров ответа от среднесуточной концентрации марганца в крови детей основной группы (p≤0,05) Маркер ответа Направление изменение показателя Параметры модели Критерий Фишера (F) Коэффициент детерминации (R2) Концентрация марганца в крови, мг/дм3 a0 a1 реперный уровень (верхняя 95% доверительная граница модели) нижняя 95% доверительная граница модели Биохимические и иммунологические показатели IgE общий в сыворотке крови повышение -0,92 57,50 8956,5 0,63 0,015 0,017 Гидроперекиси липидов в сыворотке крови повышение -0,15 7,89 1789,1 0,35 0,017 0,021 IgE спец. к марганцу в сыворотке крови повышение -0,22 6,47 4094,3 0,63 0,032 0,036 ц-АМФ в сыворотке крови снижение -1,51 41,94 1437,77 0,68 0,034 0,038 МДА в плазме крови повышение -0,04 1,03 3876,4 0,71 0,036 0,042 АОА в плазме крови снижение -0,37 7,55 652,5 0,66 0,050 0,051

Похожие патенты RU2536268C1

название год авторы номер документа
СПОСОБ РАННЕЙ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ НЕРВНОЙ СИСТЕМЫ У ДЕТЕЙ, ПОТРЕБЛЯЮЩИХ ВОДУ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ МАРГАНЦА 2014
  • Зайцева Нина Владимировна
  • Землянова Марина Александровна
  • Звездин Василий Николаевич
  • Мазунина Дарья Леонидовна
RU2569763C1
СПОСОБ ДИАГНОСТИКИ У ДЕТЕЙ ОТ 5 ДО 10 ЛЕТ КОГНИТИВНЫХ НАРУШЕНИЙ, АССОЦИИРОВАННЫХ С ВНЕШНЕСРЕДОВЫМ ВОЗДЕЙСТВИЕМ МАРГАНЦА ТЕХНОГЕННОГО ПРОИСХОЖДЕНИЯ 2014
  • Устинова Ольга Юрьевна
  • Лужецкий Константин Петрович
  • Маклакова Ольга Анатольевна
  • Шмырина Юлия Викторовна
  • Кирьянов Дмитрий Александрович
RU2546528C1
Способ диагностики у детей функционального расстройства желудка и 12-перстной кишки, ассоциированного с воздействием хрома, никеля, марганца и хлорорганических соединений: хлороформа и тетрахлорметана, техногенного происхождения 2016
  • Зайцева Нина Владимировна
  • Землянова Марина Александровна
  • Устинова Ольга Юрьевна
  • Ивашова Юлия Анатольевна
  • Мазунина Дарья Леонидовна
RU2618926C1
СПОСОБ ДИАГНОСТИКИ СНИЖЕНИЯ ПОСТВАКЦИНАЛЬНОГО ИММУНИТЕТА К КОКЛЮШУ У ДЕТЕЙ, ПРОЖИВАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ВРЕДНЫХ ХИМИЧЕСКИХ ФАКТОРОВ СРЕДЫ ОБИТАНИЯ 2013
  • Зайцева Нина Владимировна
  • Устинова Ольга Юрьевна
  • Макарова Венера Галимзяновна
  • Долгих Олег Владимирович
RU2538676C1
СПОСОБ ОЦЕНКИ НАРУШЕНИЯ ПРОЦЕССОВ АДАПТАЦИИ У ДЕТЕЙ В УСЛОВИЯХ ВНЕШНЕСРЕДОВОГО ВОЗДЕЙСТВИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ 2012
  • Зайцева Нина Владимировна
  • Землянова Марина Александровна
  • Звездин Василий Николаевич
RU2491548C1
СПОСОБ ДИАГНОСТИКИ ОКИСЛИТЕЛЬНОГО СТРЕССА У ДЕТСКОГО НАСЕЛЕНИЯ В УСЛОВИЯХ ВНЕШНЕСРЕДОВОГО ВОЗДЕЙСТВИЯ НИКЕЛЯ 2014
  • Зайцева Нина Владимировна
  • Землянова Марина Александровна
  • Щербина Светлана Геннадьевна
  • Мазунина Дарья Леонидовна
  • Уланова Татьяна Сергеевна
RU2546526C1
Способ диагностики у детей хронического гастродуоденита, ассоциированного с воздействием хрома, никеля, марганца, хлороформа и тетрахлорметана техногенного происхождения 2016
  • Землянова Марина Александровна
  • Устинова Ольга Юрьевна
  • Лужецкий Константин Петрович
  • Маклакова Ольга Анатольевна
  • Ивашова Юлия Анатольевна
RU2616326C1
СПОСОБ ДИАГНОСТИКИ СНИЖЕНИЯ ПОСТВАКЦИНАЛЬНОГО ИММУНИТЕТА К ДИФТЕРИИ У ДЕТЕЙ, ПРОЖИВАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ВРЕДНЫХ ХИМИЧЕСКИХ ФАКТОРОВ СРЕДЫ ОБИТАНИЯ 2013
  • Зайцева Нина Владимировна
  • Устинова Ольга Юрьевна
  • Макарова Венера Галимзяновна
  • Долгих Олег Владимирович
RU2524636C1
СПОСОБ ЛЕЧЕНИЯ И ПРОФИЛАКТИКИ У ДЕТЕЙ ОТ 5 ДО 10 ЛЕТ КОГНИТИВНЫХ НАРУШЕНИЙ, АССОЦИИРОВАННЫХ С ВНЕШНЕСРЕДОВЫМ ВОЗДЕЙСТВИЕМ МАРГАНЦА ТЕХНОГЕННОГО ПРОИСХОЖДЕНИЯ 2014
  • Устинова Ольга Юрьевна
  • Лужецкий Константин Петрович
  • Маклакова Ольга Анатольевна
  • Шмырина Юлия Викторовна
  • Кирьянов Дмитрий Александрович
RU2546523C1
Способ диагностики у детей функционального расстройства центральной нервной системы, ассоциированного с сочетанным воздействием марганца, свинца, бензола, ксилола и стирола техногенного происхождения 2016
  • Зайцева Нина Владимировна
  • Землянова Марина Александровна
  • Устинова Ольга Юрьевна
  • Лужецкий Константин Петрович
  • Щербаков Александр Алексеевич
RU2622010C1

Иллюстрации к изобретению RU 2 536 268 C1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНО-ДОПУСТИМОЙ КОНЦЕНТРАЦИИ ТЯЖЕЛЫХ МЕТАЛЛОВ В КРОВИ ДЕТЕЙ ПРИ МНОГОСРЕДОВОЙ ЭКСПОЗИЦИИ

Изобретение относится к области медицины и предназначено для обоснования предельно допустимых концентраций (ПДК) тяжелых металлов в крови детей, проживающих в условиях загрязненной среды обитания, по критериям риска для здоровья при хронической многосредовой экспозиции. Выбирают экологически неблагополучную территорию; с указанной территории производят репрезентативную выборку детей для исследования - основная группа, с использованием биологических, социально-бытовых и гигиенических критериев; с использованием тех же критериев производят репрезентативную выборку детей в контрольную группу из благополучной в экологическом плане территории. На указанных территориях осуществляют количественную оценку хронической экспозиции исследуемого тяжелого металла по установлению среднесуточной концентрации его в объектах внешней среды и, используя ее, рассчитывают для детей обеих групп усредненную на годовую экспозицию суммарную среднюю суточную дозу тяжелого металла, поступающего из различных источников в организм ребенка. Далее у детей один раз в три месяца в течение одного года производят отбор пробы крови для определения содержания исследуемого тяжелого металла и для определения уровня биохимических показателей плазмы и сыворотки крови, которые характеризуют ответные реакции в виде фактического или потенциального нарушения здоровья - маркеры ответа. Затем рассчитывают среднюю концентрацию исследуемого тяжелого металла в крови и сравнивают ее с референтным уровнем для этого тяжелого металла, используя при этом двухвыборочный критерий Стъюдента, устанавливая при этом адекватности выбора детей основной и контрольной групп. Далее методом математического моделирования для детей каждой группы устанавливают связь между экспозицией - суммарной средней суточной дозой исследуемого металла и маркером экспозиции - средней концентрацией металла в крови. Затем с использованием технологии «скользящего окна» осуществляют обоснование выбранных маркеров ответа. Методом, основанным на анализе отношения шансов, определяют предельно допустимую концентрацию маркера экспозиции и соответствующий ей маркер ответа.

Изобретение обеспечивает возможность определения ПДК тяжелых металлов в крови детей при многосредовой экспозиции с использованием щадящих методов, исключающих вред здоровью ребенка. 4 табл., 2 ил., 1 пр.

Формула изобретения RU 2 536 268 C1

Способ определения предельно допустимой концентрации тяжелых металлов в крови детей при многосредовой экспозиции, характеризующийся тем, что выбирают экологически неблагополучную территорию с высокой нагрузкой тяжелых металлов среды обитания с критерием индекса опасности для здоровья населения больше 1; с указанной территории производят репрезентативную выборку детей для исследования - основная группа, с использованием биологических, социально-бытовых и гигиенических критериев; с использованием тех же критериев производят репрезентативную выборку детей в контрольную группу из благополучной в экологическом плане территории, на указанных территориях с использованием годовой экспозиции осуществляют количественную оценку хронической экспозиции исследуемого тяжелого металла по установлению среднесуточной концентрации его в объектах внешней среды, затем с использованием указанных значений среднесуточной концентрации тяжелого металла в объектах внешней среды рассчитывают для детей обеих групп усредненную на годовую экспозицию суммарную среднюю суточную дозу тяжелого металла, поступающего из различных источников в организм ребенка, определяя одновременно при этом ведущий путь поступления и приоритетную среду, далее у детей один раз в три месяца в течение одного года производят отбор пробы крови для установления следующих параметров: для определения содержания исследуемого тяжелого металла и для определения уровня биохимических показателей плазмы и сыворотки крови, которые характеризуют ответные реакции в виде фактического или потенциального нарушения здоровья - маркеры ответа, под воздействием этого тяжелого металла, поступающего из приоритетной среды воздействия; затем из полученных четырех результатов в течение года рассчитывают среднюю концентрацию исследуемого тяжелого металла в крови и сравнивают ее с референтным уровнем для этого тяжелого металла, используя при этом двухвыборочный критерий Стъюдента с уровнем значимости 0,05, устанавливая при этом адекватности выбора детей основной и контрольной групп; при этом указанным критерием адекватности для контрольной группы детей является отсутствие достоверных различий средней концентрации исследуемого металла в крови с референтным уровнем, а для основной группы детей - наличие достоверных различий средней концентрации исследуемого металла в крови со средней концентрацией этого металла в крови детей контрольной группы; далее методом математического моделирования для детей каждой группы устанавливают связь между экспозицией - суммарной средней суточной дозой исследуемого металла, поступающего в организм от объектов внешней среды, и маркером экспозиции - средней концентрацией тяжелого металла в крови, определяя по наличию достоверной связи с экспозицией обоснованность выбранного маркера экспозиции; затем с использованием технологии «скользящего окна» осуществляют обоснование выбранных маркеров ответа путем установления и оценки зависимости вероятности отклонения ранее установленных биохимических показателей плазмы и сыворотки крови у детей основной группы относительно аналогичных показателей у детей контрольной группы и от физиологической нормы; далее методом, основанным на анализе отношения шансов, определяют предельно допустимую концентрацию маркера экспозиции и соответствующий ей маркер ответа, исходя из условия, при котором показатель отношения шансов, характеризующий силу связи между воздействием тяжелого металла и ответом организма, будет больше или равен единице, для этого для каждого наблюдения формируют таблицу данных: значение средних концентраций исследуемого металла в крови и значений маркеров ответа для каждого наблюдения и производят условное деление данных на две части: ниже текущего наблюдения - уровня средней концентрации тяжелого металла в крови и выше текущего наблюдения; далее для обеих частей рассчитывают величину, характеризующую вероятность отклонения маркера ответа основной группы от маркера ответа в контрольной группе, как отношение числа наблюдений, отличающихся от контроля, к общему числу наблюдений, а показатель отношения шансов OR для каждой среднесуточной концентрации исследуемого металла в крови определяют из соотношения:
O R i = p i + 1 p i + / p i 1 p i
где i - индекс, отражающий номер наблюдения;
p i - вероятность отклонения маркера ответа основной группы от маркера ответа в контрольной группе в таблице в области ниже текущего наблюдения;
p i + - вероятность отклонения маркера ответа основной группы от маркера ответа в контрольной группе в таблице в области выше текущего наблюдения;
причем достоверность рассчитанного показателя отношения шансов оценивают по 95% доверительному интервалу, в пределах которого находится истинное значение показателя отношения шансов, а связь признают достоверно установленной при нижней границе доверительного интервала больше или равного 1; далее строят модель зависимости между уровнем маркера экспозиции и указанным показателем отношения шансов, причем построение модели осуществляют на основании данных о средней концентрации исследуемого металла в крови и данных о соответствующем значении показателя отношения шансов отклонения маркера ответа в основной группе относительно значения маркера ответа в контрольной группе по каждому наблюдению; причем для установления адекватности указанной модели, а значит - достоверности полученных данных, используют процедуру дисперсионного анализа, основанную на расчете критерия Фишера и коэффициента детерминации, принимая во внимание, что различия считают статистически значимыми при p≤0,05; далее производят расчет реперной максимальной недействующей концентрации тяжелого металла в крови x0 для каждого маркера ответа по формуле:
x 0 = a 0 a 1 , мг/дм3
где a1, a0 - параметры модели,
а также осуществляют определение при построении указанной модели 95%-ных доверительных границ точечных оценок реперных концентраций исследуемого металла в крови, причем в качестве реперной концентрации исследуемого тяжелого металла в крови принимается значение верхней 95%-ной доверительной границы для каждого маркера ответа; а в качестве предельно допустимой концентрации исследуемого тяжелого металла в крови детей принимают наименьшую концентрацию из имеющегося ряда 95%-ных верхних доверительных границ реперных концентраций металла в крови для каждого маркера ответа.

Документы, цитированные в отчете о поиске Патент 2014 года RU2536268C1

СПОСОБ РАННЕЙ ДИАГНОСТИКИ НАРУШЕНИЙ АДАПТАЦИИ У ДЕТЕЙ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ВРЕДНЫХ ХИМИЧЕСКИХ ФАКТОРОВ СРЕДЫ ОБИТАНИЯ 2009
  • Зайцева Нина Владимировна
  • Землянова Марина Александровна
  • Кирьянов Дмитрий Александрович
  • Звездин Василий Николаевич
  • Уланова Татьяна Сергеевна
  • Долгих Олег Владимирович
RU2419795C1
СПОСОБ ГИГИЕНИЧЕСКОЙ ДИАГНОСТИКИ И ОЦЕНКИ НАПРЯЖЕННОСТИ ЙОДДЕФИЦИТНЫХ СОСТОЯНИЙ НА ТЕРРИТОРИИ С СОЧЕТАННЫМ ВОЗДЕЙСТВИЕМ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ 2001
  • Зайцева Н.В.
  • Землянова М.А.
  • Кирьянов Д.А.
  • Тырыкина Т.И.
  • Долгих О.В.
  • Уланова Т.С.
  • Леденцова Е.Е.
RU2206272C1
СПОСОБ ОПРЕДЕЛЕНИЯ НОРМАТИВА ПРЕДЕЛЬНО ДОПУСТИМОЙ КОНЦЕНТРАЦИИ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В ВОДНЫХ ОБЪЕКТАХ 2011
  • Волкова Светлана Николаевна
  • Сивак Елена Евгеньевна
  • Потемкин Сергей Николаевич
RU2480747C2
УСМАНОВА А.Р
и ГАЛЛЯМОВ А.Б
Содержание макро- и микроэлементов в сыворотке крови детей младшего школьного возраста, проживающих в районах с различной антропогенной нагрузкой
- Казанский медицинский журнал, 2009, Т.90, N4, С.494-496
И.Н
Ильченко и др
Воздействие

RU 2 536 268 C1

Авторы

Зайцева Нина Владимировна

Землянова Марина Александровна

Звездин Василий Николаевич

Кирьянов Дмитрий Александрович

Даты

2014-12-20Публикация

2013-10-22Подача