СПОСОБ ПЕРЕРАБОТКИ СТОЧНЫХ ВОД Российский патент 2014 года по МПК C02F9/04 C02F1/72 C02F1/74 C02F101/38 C02F103/36 

Описание патента на изобретение RU2537018C2

Изобретение относится к способу переработки содержащих нитроароматические и нитрогидроксиароматические соединения сточных вод, которые образуются, например, при получении нитроароматических или нитрогидроксиароматических соединений.

Нитроароматические и нитрогидроксиароматические соединения обладают бактерицидным действием и/или трудно поддаются биологическому расщеплению. В связи с этим они не должны попадать в окружающую среду, а также не должны поступать на биологические очистные сооружения в высококонцентрированном состоянии. Указанные обстоятельства обусловливают необходимость выполнения технологической переработки содержащих эти соединения сточных вод перед подачей последних на биологические очистные сооружения.

Из уровня техники известны несколько технологических вариантов расщепления нитроароматических и нитрогидроксиароматических соединений в водных растворах, однако все они имеют существенные недостатки.

В немецкой заявке на патент DE 2818680 A1 предложен способ переработки содержащих нитрогидроксиароматические соединения сточных вод, отличающийся тем, что содержащие нитрогидроксиароматические соединения сточные воды нагревают под давлением без доступа воздуха и кислорода в температурном интервале от 150 до 500°C. При этом предпочтительное давление находится в интервале от 50 до 350 бар. В предпочтительном варианте осуществления указанного способа сточные воды содержат нитрогидроксиароматические соединения в виде соответствующих водорастворимых солей, которые могут образоваться в щелочной среде. Недостатком указанного способа является необходимость использования высокого давления, что при осуществлении способа в непрерывном режиме обусловливает высокие расходы, которые необходимы для приведения соответствующих насосов в рабочее состоянии и для их непосредственной эксплуатации. Кроме того, для поддержания необходимой температуры требуется постоянный обогрев. Другой недостаток указанного способа состоит в том, что в результате его осуществления содержание нитрит-ионов в сточной воде не сокращается, а как показано в соответствующих примерах, остается по меньшей мере неизменным (пример 4) или даже может удваиваться (пример 2). Нитрит-ионы также обладают бактерицидным действием, в связи с чем допускается поступление на биологические очистные сооружения лишь ограниченных количеств указанных ионов.

В европейском патенте EP 503387 B1 описан способ переработки содержащих ароматические нитросоединения сточных вод, образующихся на установках для получения нитробензола, который предусматривает их обработку азотной кислотой при температурах от 180 до 350°C и давлениях от 40 до 250 бар. В результате подобной обработки содержание нитрогидроксиароматических соединений сокращается до значений, составляющих менее 1 части на млн, при одновременном расщеплении общего органического углерода, превышающем 95%.

Недостатком предложенного в патенте EP 503387 B1 способа является необходимость его осуществления в указанных выше рабочих условиях, а также необходимость использования азотной кислоты, что приводит к повышению содержания нитратов в сточной воде.

Из европейского патента EP 1132347 B1 известен способ, в соответствии с которым сточные воды, образующиеся при синтезе нитроароматических соединений, сначала концентрируют до уровня, близкого пределу растворимости нитрогидроксиароматических соединений или превышающего этот предел, а затем подвергают термическому расщеплению, которое предпочтительно выполняют в суперкритических для воды условиях. Необходимые для осуществления указанного способа рабочие условия (давление и температура) выше критического давления и критической температуры воды. Критическое давление воды составляет 218,3 бар, в то время как ее критическая температура составляет 374,1°C (см. Handbook of Chemistry and Physics, R.C.Weast (издатель), издательство CRC Press, Boca Raton, 66-е издание, 1985, с.F-64, таблица 2). Обработка сточных вод в подобных условиях связана с повышенными расходами.

Высокими издержками отличаются также любые способы, предусматривающие использование в качестве окислительного средства пероксида водорода. Для осуществления подобного способа, реализуемого в кислых условиях, в качестве катализатора чаще всего используют двухвалентное железо. Соответствующую технологию называют окислением Фентона. Она позволяет эффективно осуществлять удаление нитроароматических соединений (см., например, В.Е.Chamarro, A.Marco, S.Esplugas (2001), Use of fenton reagent to improve organic chemical biodegradability, Water Research, 35 (4), c.c.1047-1051, а также европейские патенты EP 22525 В1 и EP 360989 В1). Преимущество подобного способа по сравнению с цитированными выше способами состоит в том, что он может быть реализован без избыточного давления и при температуре, равной температуре внешней среды. Однако использование в качестве окислительного средства пероксида водорода связано с повышенными издержками, которые возрастают по мере увеличения содержания нитроароматических или нитрогидроксиароматических соединений в сточной воде. Кроме того, указанный способ требует высокого расхода каталитически активного железа, что обусловливает образование значительных количеств шлама, утилизация которого связана с дополнительными издержками. В связи с этим способы, предусматривающие использование в качестве окислительного средства пероксида водорода, непригодны для переработки сточных вод с повышенным содержанием загрязнений, например, сточных вод, образующихся в процессе синтеза нитроароматических или нитрогидроксиароматических соединений.

В немецком патенте DE 3316265 C2 предложен способ мокрого окисления содержащихся в сточных водах органических веществ, предусматривающий их обработку кислородом при повышенных температурах и давлениях в присутствии содержащей ионы железа окислительно-восстановительной системы и одновременном присутствии сокатализаторов, таких как бензохинон, нафтохинон или п-аминофенол. При этом мокрое окисление осуществляют при температурах от 50 до 200°C и давлениях от 1 до 60 бар в кислой среде, показатель pH которой находится в диапазоне от 1 до 4.

Согласно примеру 17, приведенному в указанной публикации, необходимые для окисления сокатализаторы могут быть получены также путем щелочной обработки бурого угля, если последний при реализации стадии окисления остается в реакционной смеси. Аналогичная технология приводится также в примере 18 для каменного угля.

Кроме того, в соответствии с патентом DE 3316265 C2 к сточным водам, которые содержат вещества с окисляющим действием, например, такие как нитроароматические соединения, например, с целью превращения последних в амины следует добавлять восстанавливающее средство, например, такое как гидразин, диоксид серы, сульфид натрия или железные опилки. В частности, как следует из приведенного в цитируемой публикации примера 16, соответствующее восстановление необходимо осуществлять на предварительной стадии, на которой в качестве восстанавливающего средства используют сульфид натрия. На этой стадии образующуюся при синтезе нитростильбеновой кислоты сточную воду, показатель рН которой посредством раствора едкого натра устанавливают на уровне 12, смешивают с 2 г/л сульфида натрия и выдерживают в течение 30 минут при 140°C в отсутствие кислорода. После этого сточную воду окисляют в присутствии сульфата железа(М) при 180°C, парциальном давлении кислорода 5 бар и показателе рН, равном 2. В результате 90-минутной обработки подобного типа показатель DOC сточной воды (количество растворенного органического углерода) снижается почти на 80%.

Однако недостатком использования рекомендуемых в немецком патенте DE 3316265 C2 восстанавливающих средств (гидразина, сульфидов и сульфитов) является их высокая стоимость и/или дополнительное загрязнение сточных вод солями (сульфатами, ионами металлов). Тем не менее предлагаемый в этой публикации способ обладает некоторыми преимуществами по сравнению с уровнем техники, поскольку он позволяет осуществлять расщепление содержащихся в сточных водах органических соединений при низких давлениях и температурах.

С учетом вышеизложенного в основу настоящего изобретения была положена задача предложить технически безопасный, простой и экономичный способ переработки содержащих нитроароматические и нитрогидроксиароматические соединения сточных вод, который отличается возможностью его осуществления в экономически благоприятных рабочих условиях и возможностью подачи обработанной им сточной воды на биологическое очистное сооружение.

Неожиданно было обнаружено, что переработку содержащих нитроароматические и нитрогидроксиароматические соединения сточных вод можно осуществлять предлагаемым в изобретении двухстадийным способом, на первой стадии которого указанные соединения восстанавливают (то есть гидрируют) экономичным и не образующим солей восстанавливающим средством, в то время как на второй стадии полученную на первой стадии реакционную смесь подвергают реализуемому в кислой среде мокрому окислению кислородом, катализируемому железом.

Таким образом, объектом настоящего изобретения является способ обработки содержащей нитроароматические и/или нитрогидроксиароматические соединения сточной воды, отличающийся тем, что на первой стадии сточную воду смешивают с органическим восстанавливающим средством, которое не образует в сточной воде солей, и обрабатывают в восстанавливающих условиях, а на второй стадии полученную на первой стадии сточную воду подкисляют и подвергают окислению окислительным средством.

Обнаружено, что для удовлетворительного расщепления нитрогидроксиароматических соединений одного катализируемого железом мокрого окисления кислородом в щелочной среде недостаточно (см. сравнительный пример 1), в то время как катализируемое железом мокрое окисление кислородом в кислой среде не допускается, поскольку в этом случае нитрогидроксиароматические соединения выпадают в осадок, состоящий из твердых веществ, которые могут обладать взрывооопасностью (см. сравнительный пример 2). Полное удаление нитрогидроксиароматических соединений путем катализируемого железом мокрого окисления кислородом удается лишь в том случае, если их подвергают химическому восстановлению, выполняемому в соответствии с немецким патентом DE 3316265 С2, например, сульфитом натрия (см. сравнительный пример 3).

Для исключения использования дорогостоящего сульфита натрия, обусловливающего также повышение содержания сульфатов в сточной воде, в соответствии с настоящим изобретением была проверена возможность использования более экономичных вспомогательных веществ, таких как железные опилки и бурый уголь. Использование для предварительного восстановления железных опилок в качестве известного восстанавливающего средства позволяет снизить содержание нитрогидроксиароматических соединений в сточной воде на 64%. Однако неожиданно было обнаружено, что в качестве восстанавливающего средства для выполняемого в щелочной среде предварительного восстановления нитрогидроксиароматических соединений можно использовать также бурый уголь, если подобное восстановление осуществлять при повышенной температуре, предпочтительно находящейся в интервале от 120 до 200°C. Использование бурого угля позволяет сократить содержание нитрогидроксиароматических соединений в сточной воде на 86% (см. сравнительный пример 4).

Комбинирование катализируемого железом мокрого окисления содержащей нитрогидроксиароматические соединения сточной воды кислородом с выполняемым в щелочной среде предварительным восстановлением сточной воды бурым углем позволяет достичь полного расщепления нитрогидроксиароматических соединений (см. выполненный согласно изобретению пример 5). При этом бурый уголь является экономичным восстанавливающим средством, использование которого не приводит к повышению содержания солей в сточной воде, поскольку он обладает способностью к биологическому расщеплению. При этом азот, содержащийся в нитроароматических или нитрогидроксиароматических соединениях, превращается в безвредные для бактерий соединения, преимущественно в соединения аммония. В то же время образование нитрит-ионов отсутствует, а напротив, происходит превращение даже уже присутствующих в сточной воде нитрит-ионов (см. выполненный согласно изобретению пример 6).

Таким образом, предпочтительным является способ обработки содержащей нитроароматические и/или нитрогидроксиароматические соединения сточной воды, отличающийся тем, что на первой стадии сточную воду смешивают с торфом, бурым углем и/или каменным углем и обрабатывают в восстанавливающих условиях, в то время как на второй стадии полученную на первой стадии сточную воду подкисляют и подвергают окислению окислительным средством.

Сточные воды, содержащие нитроароматические и/или нитрогидроксиароматические соединения, образуются в процессе синтеза нитроароматических соединений, например, при получении нитробензола путем нитрования бензола или при получении динитротолуола путем нитрования толуола. Указанные сточные воды, как правило, образуются в виде щелочных растворов, поскольку нитрогидроксиароматические соединения в форме находящихся в водной среде солей обладают растворимостью в щелочных средах. Подобную щелочную сточную воду, содержащую нитроароматические и/или нитрогидроксиароматические соединения, смешивают с восстанавливающим средством, нагревают предпочтительно до температуры, находящейся в интервале от 80 до 200°C, особенно предпочтительно от 120 до 200°C, и выдерживают при указанной температуре в течение промежутка времени, составляющего от 5 минут до 5 часов, предпочтительно от 15 минут до 3 часов. Указанную температуру нагревания сточной воды предпочтительно сохраняют на постоянном уровне в течение всего времени выдержки. В качестве восстанавливающего средства согласно изобретению используют не образующее солей восстанавливающее средство, предпочтительно торф или уголь, в частности бурый или каменный уголь, особенно предпочтительно бурый уголь простого качества. Особенно предпочтительный бурый уголь простого качества представляет собой экономичный материал, остатки которого при необходимости можно выводить из производственного процесса и направлять на биологические очистные сооружения. Концентрация восстанавливающего средства в пересчете на объем сточной воды предпочтительно составляет от 1 до 200 г/л, особенно предпочтительно от 5 до 50 г/л.

Торф, бурый уголь или каменный уголь, предпочтительно используемые в качестве восстанавливающих средств, отличаются друг от друга степенью науглероживания, которая определяется содержанием летучих компонентов и снижается в той последовательности, в которой эти материалы указаны выше. Так, например, содержание летучих компонентов в бурых углях простого качества, таких как лигнит, составляет от 50 до 60% мас., в твердом буром угле от 45 до 50% мас., тогда как содержание летучих компонентов в различных сортах каменного угля составляет менее 45%. Типичное содержание летучих компонентов в торфе составляет более 50% мас., причем в отличие от бурого угля торф содержит также свободную целлюлозу (Römpp Chemielexikon Online 2008, издательство Georg Thieme, Штутгарт, ключевые слова "Torf" и "Kohle").

Полученную на первой стадии (стадии предварительного восстановления) сточную воду нейтрализуют и подкисляют избыточным количеством кислоты. Для подкисления можно использовать минеральную кислоту, предпочтительно серную кислоту, а также органические кислоты. К предпочтительным органическим кислотам относятся легко биологически расщепляемые уксусная кислота и щавелевая кислота. Для подкисления можно использовать также смеси нескольких кислот.

После подкисления сточной воды на второй стадии осуществляют ее окисление окислительным средством. Речь при этом предпочтительно идет о катализируемом железом мокром окислении кислородом. С этой целью поток подкисленной сточной воды смешивают с катализатором, в качестве которого предпочтительно используют сульфат железа(II), и направляют в реактор для окисления, в котором сточную воду в течение промежутка времени, составляющего от 5 до 180 минут, предпочтительно от 30 до 60 минут, подвергают обработке кислородсодержащим газом, предпочтительно воздухом, особенно предпочтительно технически чистым кислородом, которую предпочтительно осуществляют в температурном интервале от 100 до 250°C, особенно предпочтительно от 160 до 220°C. При этом в качестве реактора предпочтительно используют барботажную колонну или несколько параллельно или последовательно соединенных барботажных колонн.

Степень освобождения обработанных предлагаемым в изобретении способом сточных вод от нитроароматических соединений, нитрогидроксиароматических соединений и нитрит-ионов вполне достаточна для их непосредственной подачи на очистные сооружения с целью выполнения биологической очистки.

Примеры

В нижеследующих примерах используют сточную воду, которая может образоваться в процессе производства нитроароматических соединений, например нитробензола. Подобная сточная вода не содержит нитроароматических соединений, однако в ней присутствует несколько нитрогидроксиароматических соединений, все из которых относятся к группе нитрофенолов, сокращенно обозначаемых следующим образом:

2-НФ 2-нитрофенол 4-НФ 4-нитрофенол 2,4-ДНФ 2,4-динитрофенол 2,6-ДНФ 2,6-динитрофенол 2,4,6-ТНФ 2,4,6-тринитрофенол (тривиальное название пикриновая кислота)

Содержание нитрофенолов в сточной воде определяют методом жидкостной хроматографии при высоком давлении. Пригодный метод подобного хроматографического анализа приводится, например, в ст.: Belloli R., Barlette В., Bolzacchini Е., Meinardi S., Orlandi M., Rindone В. "Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography", Journal of Chromatography A, 846 (1999) 277-281.

Сравнительный пример 1. Мокрое окисление в щелочной среде без предварительного восстановления

4 литра сильно щелочной сточной воды из процесса производства нитроароматических соединений, загруженной в лабораторный резервуар с мешалкой, постепенно нагревают до 200°C. Кроме того, в указанный резервуар подают кислород до установления общего давления на уровне 20 бар. Через три часа сточную воду охлаждают и определяют концентрацию нитроароматических соединений. Как следует из приведенных в таблице 1 данных, степень расщепления нитрофенолов, осуществляемого путем мокрого окисления без предварительного восстановления, не превышает 62%.

Таблица 1 2-НФ, мг/кг 4-НФ, мг/кг 2,4-ДНФ, мг/кг 2,6-ДНФ, мг/кг 2,4,6-ТНФ, мг/кг Суммарное содержание нитрофенолов, мг/кг Сточная вода до обработки 1440 106 7756 1416 376 11094 Сточная вода после обработки 367 80 3011 681 72 4211

Сравнительный пример 2. Мокрое окисление в кислой среда без предварительного восстановления

1 литр сильно щелочной сточной воды из процесса производства нитроароматических соединений с целью нейтрализации и подкисления смешивают в химическом стакане с серной кислотой. При этом выпадает белый осадок, который состоит из твердых нитрогидроксиароматических соединений. Мокрое окисление осадка твердых веществ по причинам безопасности не выполняют, поскольку не исключается их взрывооопасность.

Сравнительный пример 3. Предварительное восстановление сульфитом натрия (неорганическим) и последующее мокрое окисление

4,5 литра сточной воды из процесса производства нитроароматических соединений смешивают с 270 г сульфита натрия, полученную смесь загружают в снабженный мешалкой лабораторный резервуар и в течение одного часа нагревают при 70°C. Затем 4 литра обработанной указанным образом сточной воды смешивают с 67 мл серной кислоты и 6 г гептагидрата сульфата железа (II). После этого осуществляют постепенное нагревание смеси до 200°C и подачу кислорода до установления общего давления на уровне 20 бар. Через три часа сточную воду охлаждают и определяют концентрацию нитроароматических соединений. Как следует из приведенных в таблице 2 данных, из сточной воды удалены все нитрофенолы, остаточная концентрация которых ниже соответствующих предельно обнаруживаемых значений. Однако в связи с высокой стоимостью восстанавливающего средства подобная обработка сточной воды является нерентабельной.

Таблица 2 2-НФ, мг/кг 4-НФ, мг/кг 2,4-ДНФ, мг/кг 2,6-ДНФ, мг/кг 2,4,6-ТНФ, мг/кг Суммарное содержание нитрофенолов,
мг/кг
Сточная вода до обработки 1440 106 7756 1416 376 11094 Сточная вода после обработки <1 <1 <1 <1 <1 <5

Сравнительный пример 4. Предварительное восстановление железными опилками или бурым углем без мокрого окисления

4 литра, соответственно 5 литров, сточной воды из процесса производства нитроароматических соединений смешивают с 200 г железных опилок, соответственно 200 г буроугольной пыли, и соответствующие смеси в течение трех часов нагревают при 200°C. Затем указанные смеси охлаждают и определяют концентрацию нитроароматических соединений. Дополнительное мокрое окисление не осуществляют. Как следует из приведенных в таблице 3 данных, предварительное восстановление железными опилками позволяет расщепить до 64% нитрофенолов, в то время как при использовании для восстановления бурого угля удается расщепить до 86% нитрофенолов.

Таблица 3 2-НФ, мг/кг 4-НФ, мг/кг 2,4-ДНФ, мг/кг 2,6-ДНФ, мг/кг 2,4,6-ТНФ, мг/кг Суммарное содержание нитрофенолов, мг/кг Сточная вода до обработки 1074 104 5350 1382 512 8422 Сточная вода после обработки железными опилками 117 106 2677 106 <20 3046 Сточная вода после обработки буроугольной пылью 135 70 935 27 <5 1172

Пример 5 (согласно изобретению). Предварительное восстановление бурым углем (органическим) и мокрое окисление

5 литров сточной воды из процесса производства нитроароматических соединений смешивают с 200 г буроугольной пыли и смесь в течение трех часов нагревают при 200°C. Затем 4 литра обработанной указанным образом сточной воды смешивают с 51 мл серной кислоты и 6 г гептагидрата сульфата железа(II). После этого осуществляют постепенное нагревание смеси до 200°C и подачу кислорода до установления общего давления на уровне 20 бар. Через три часа сточную воду охлаждают и определяют концентрацию нитрофенолов. Как следует из приведенных в таблице 4 данных, все нитрофенолы удалены до остаточных концентраций ниже предельно обнаруживаемых значений.

Таблица 4 2-НФ, мг/кг 4-НФ, мг/кг 2,4-ДНФ, мг/кг 2,6-ДНФ, мг/кг 2,4,6-ТНФ, мг/кг Суммарное содержание нитрофенолов, мг/кг Сточная вода до обработки 1074 104 5350 1382 512 8422 Сточная вода после обработки <5 <5 <5 <5 <5 <25

Пример 6 (согласно изобретению). Удаление нитрита

5 литров сточной воды из процесса производства нитроароматических соединений смешивают с 50 г буроугольной пыли и в течение трех часов нагревают при 180°C. Затем отбирают образец сточной воды и определяют концентрацию азотсодержащих ионов. 3 литра обработанной указаннным образом сточной воды смешивают с серной кислотой и 4,5 г гептагидрата сульфата железа (II). Затем осуществляют постепенное нагревание смеси до 200°C и подачу кислорода до установления общего давления на уровне 20 бар. Через два часа сточную воду охлаждают и определяют концентрацию азотсодержащих ионов. Как следует из приведенных в таблице 5 данных, достигают полного удаления нитрит-ионов, в то время как азотсодержащие ионы преимущественно превращаются в ионы аммония.

Таблица 5 Общий азот, мг/л Азот в виде NO3- мг/л Азот в виде NO2-, мг/л Азот в виде NH4+, мг/л Сточная вода до обработки 1910 <1 290 16 Сточная вода после восстановления бурым углем 1690 <1 284 486 Сточная вода после окисления кислородом 1310 78 <1 1678

Похожие патенты RU2537018C2

название год авторы номер документа
СПОСОБ ПРОМЫВКИ ДИНИТРОТОЛУОЛА 2013
  • Нето Замюэль
  • Фритц Рюдигер
  • Хемпель Ренате
  • Аллардт Хольгер
  • Беккер Барбара
  • Лешински Юлиа
  • Аренс Зебастиан
  • Херманн Хайнрих
  • Хендель Мирко
  • Пельманн Юрген
RU2627308C2
Способ обезвреживания водных отходов, содержащих углеводороды 2022
  • Аетов Алмаз Уралович
  • Габитов Радиф Ракибович
  • Гумеров Фарид Мухамедович
  • Мазанов Сергей Валерьевич
  • Усманов Рустем Айтуганович
RU2782099C1
СПОСОБ ВОССТАНОВЛЕНИЯ ШЕСТИВАЛЕНТНОГО ХРОМА, СОДЕРЖАЩЕГОСЯ В ОКСИДНЫХ ТВЕРДЫХ МАТЕРИАЛАХ 2013
  • Ортманн, Райнер
  • Фридрих, Хольгер
  • Лабушанье, Крис
  • Ван Дер Мерве, Дэви
  • Визажи, Барри
RU2646085C2
СПОСОБ ОБРАБОТКИ ВОДЫ, СОДЕРЖАЩЕЙ ИОНЫ ТЯЖЕЛЫХ МЕТАЛЛОВ 1997
  • Бейсман Сес Ян Нико
  • Дейкман Хенк
RU2178391C2
СПОСОБ ОЧИСТКИ АММОНИЙСОДЕРЖАЩЕЙ СТОЧНОЙ ВОДЫ ПОСРЕДСТВОМ РЕГУЛИРОВАНИЯ pH 2006
  • Ветт Бернхард
RU2418749C2
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД 2018
  • Басак, Каушик
  • Ван Маурик, Ариан
  • Верма, Нишитх
  • Ядав, Ашиш
RU2778318C2
ПРОМЕЖУТОЧНАЯ БИОЛОГИЧЕСКИ-АБИОТИЧЕСКАЯ ОБРАБОТКА ОТХОДОВ 1998
  • Худенко Борис Михайлович
RU2225366C2
СПОСОБ ПЕРЕРАБОТКИ ВОДЫ, СОДЕРЖАЩЕЙ СОЕДИНЕНИЯ СЕРЫ (ВАРИАНТЫ) 1991
  • Сес Ян Нико Бейсман[Nl]
RU2079450C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ НЕФТЕЗАГРЯЗНЕННЫХ ГРУНТОВ, СПОСОБ ОБЕЗВРЕЖИВАНИЯ ОТРАБОТАННЫХ БУРОВЫХ ШЛАМОВ 2011
  • Куми Вячеслав Владимирович
RU2486166C2
МИКРОБИОЛОГИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ НИТРОАРОМАТИЧЕСКОГО СОЕДИНЕНИЯ, ПРИСУТСТВУЮЩЕГО В РАСТВОРЕ ИЛИ В ПОЧВЕ 1999
  • Уаззани Жамал
  • Ле Кампьон Лоранс
RU2249564C2

Реферат патента 2014 года СПОСОБ ПЕРЕРАБОТКИ СТОЧНЫХ ВОД

Изобретение может быть использовано для переработки сточных вод производства нитроароматических или нитрогидроксиароматических соединений, например, нитробензола или динитротолуола. Для осуществления способа проводят двухстадийную обработку, включающую стадию предварительного восстановления и стадию мокрого окисления. На первой стадии щелочную сточную воду смешивают с органическим восстанавливающим средством, которое не образует в сточной воде солей, и выбранным из торфа, бурого угля и/или каменного угля. Обработку в восстанавливающих условиях проводят при нагревании до температуры от 80 до 200°C и выдерживании при указанной температуре в течение времени от 5 мин до 5 часов. На второй стадии полученную на первой стадии сточную воду подкисляют и подвергают окислению кислородсодержащим газом, например кислородом. Способ предлагает технически безопасную, простую и экономичную технологию переработки и очистки сточных вод, обеспечивающую снижение вредных примесей до уровня, приемлемого для подачи обработанных сточных вод на биологическую очистку. 3 з.п. ф-лы, 5 табл., 6 пр.

Формула изобретения RU 2 537 018 C2

1. Способ для переработки и очистки содержащей нитроароматические и/или нитрогидроксиароматические соединения щелочной сточной воды из производства нитроароматических соединений, отличающийся тем, что на первой стадии щелочную сточную воду смешивают с органическим восстанавливающим средством, которое не образует в сточной воде солей и которое выбрано из торфа, бурого угля и/или каменного угля, и обрабатывают в восстанавливающих условиях, причем щелочную сточную воду нагревают до температуры от 80 до 200°C и выдерживают при указанной температуре в течение промежутка времени, составляющего от 5 мин до 5 часов, затем на второй стадии полученную на первой стадии сточную воду подкисляют и подвергают окислению кислородсодержащим газом.

2. Способ по п.1, отличающийся тем, что в качестве окислительного средства используют кислород.

3. Способ по п.1, отличающийся тем, что вторую стадию реализуют в реакторе, непосредственно в который вводят кислоту и в котором осуществляют окисление.

4. Способ по п.1, отличающийся тем, что содержащая нитроароматические и/или нитрогидроксиароматические соединения сточная вода образуется в процессе производства нитробензола или динитротолуола.

Документы, цитированные в отчете о поиске Патент 2014 года RU2537018C2

US 6100382 А, 08.08.2000;
US 4525283 А, 25.06.1985;
СПОСОБ УДАЛЕНИЯ АЗОТСОДЕРЖАЩИХ ГЕТЕРОЦИКЛИЧЕСКИХ ИЛИ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ ИЗ СТОКОВ 1998
  • Ле Кампьон Лоранс
  • Уаззани Жамаль
RU2216524C2
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ ПРИМЕСЕЙ 1998
  • Рязанцев А.А.
  • Батоева А.А.
  • Жалсанова Д.Б.
RU2135419C1
EP 0616980 A1, 28.09.1994
CN 1907888 A, 07.02.2007

RU 2 537 018 C2

Авторы

Рауш Андреас, Карл

Блехер Кристоф

Даты

2014-12-27Публикация

2010-01-27Подача