РУЛЕВОЙ ВИНТ ВЕРТОЛЕТА, УСТАНОВЛЕННЫЙ В ТУННЕЛЕ Российский патент 2015 года по МПК B64C27/82 

Описание патента на изобретение RU2538497C1

Изобретение относится к авиационной технике, а именно к конструкции рулевых винтов вертолетов, служащих для компенсации реактивного момента несущего винта, а также для путевого управления вертолетом.

Известен рулевой винт в туннеле, описанный в патенте US 8286908 B2 (B64C 27/82).

Рулевой винт создает силу тяги, необходимую для компенсации крутящего момента несущего винта и путевого управления вертолетом. Рулевой винт установлен в поперечном туннеле, который имеет профилированную входную, цилиндрическую и выходную части. Поперечный туннель размещается в хвостовой части вертолета. К стенкам туннеля крепятся одним концом неподвижные лопатки спрямляющего аппарата, а другим концом лопатки удерживают статор, внутри которого закреплен редуктор. Лопатки спрямляющего аппарата наклонены в двух плоскостях относительно статора и туннеля. На выходном валу редуктора закреплена вращающаяся втулка с лопастями, создающими силу тяги. Лопасти закреплены в одной плоскости вращения с неравномерным шагом по азимуту. Величины неравномерного шага по азимуту между смежными вращающимися лопастями вычисляются по известным теоретическим формулам.

Размещение всех лопастей винта в одной плоскости ограничивает количество лопастей на втулке, из-за недостатка места для компоновки их комлевых частей и механизмов управления шагом лопастей. Ограничены величины хорд лопастей рулевого винта из условия допустимых нагрузок на проводку управления шагом лопастей.

Поскольку ограничены как количество лопастей, так и хорда лопастей, то ограничена величина максимальной тяги винта, которая является критическим параметром для путевого управления вертолетом. Вычисляемый по теоретическим формулам неравномерный шаг по азимуту между последовательными лопастями не обеспечивает диаметрально противоположное расположение лопастей.

При таком расположении лопастей винта-прототипа центробежные силы вращающихся лопастей не уравновешены, суммарная, вращающаяся вместе с лопастями, неуравновешенная центробежная сила передается на хвостовую часть вертолета, вызывая вибрацию. Главным недостатком однорядного размещения лопастей на втулке являются конструктивно-компоновочные пространственные ограничения, не позволяющие разместить пары смежных лопастей с наименьшими по азимуту угловыми расстояниями, когда это требуется по теоретическим формулам из условия уменьшения акустического излучения. Аэродинамическое качество винта с однорядным расположением лопастей ограничено и может быть увеличено по сравнению с прототипом.

Техническая задача заявляемого технического решения рулевого винта в туннеле состоит в обеспечении наименьшего акустического излучения винта с минимально возможным уровнем вибраций вследствие взаимно уравновешенных центробежных сил при одновременном повышении аэродинамического качества.

Решение поставленной технической задачи обеспечивается тем, что у рулевого винта вертолета, установленного в туннеле, который имеет профилированную входную, цилиндрическую и выходную части, состоящего из статора, внутри которого закреплен редуктор с входным валом и выходным валом, на котором установлена втулка с закрепленными на ней лопастями, неподвижных лопаток спрямляющего аппарата, установленных наклонно к поверхности туннеля и закрепленных одним концом на поверхности цилиндрической части туннеля, а другим на корпусе статора, рулевой винт содержит двенадцать лопастей, причем втулка снабжена вторым рядом лопастей, расположенных в цилиндрической части туннеля с расстоянием между рядами 0,08-0,20 радиуса рулевого винта, при этом угловые расстояния между ближайшими лопастями в общей для двух рядов последовательности лопастей в каждой из последовательных по вращению трех пар соотносятся как 3:5:7, при этом количество лопастей в каждом ряду четное и установлены они диаметрально противоположно, опоры лопаток спрямляющего аппарата на цилиндрической поверхности туннеля расположены симметрично относительно оси входного вала и число лопаток четное, а крепление каждой из лопаток к статору смещено по отношению крепления той же лопатки к поверхности туннеля, в направлении по часовой стрелке со стороны профилированной входной части туннеля.

Изобретение поясняется чертежами, где на:

фиг.1 изображен общий вид рулевого винта, установленного в туннеле;

фиг.2 изображена втулка рулевого винта с лопастями, установленными в два ряда;

фиг.3 изображен вид в плане втулки рулевого винта;

фиг.4 изображено расположение неподвижных лопаток спрямляющего аппарата рулевого винта, вид в плане со стороны профилированной входной части туннеля.

Рулевой винт вертолета установлен в поперечном туннеле 1 и содержит втулку 2, к которой крепятся лопасти 3 первого ряда и лопасти 4 второго ряда. Рулевой винт содержит двенадцать лопастей 3, 4, причем количество лопастей 3 в первом ряду и количество лопастей 4 во втором ряду - четное и установлены они в каждом ряду диаметрально противоположно. Расстояние между рядами лопастей 3, 4 составляет 0,08-0,20 радиуса рулевого винта, а угловые расстояния между ближайшими лопастями 3, 4 в общей для двух рядов последовательности лопастей в каждой из последовательных по вращению трех пар лопастей соотносятся как 3:5:7.

Между тремя последовательными парами лопастей обеспечивается соотношение угловых расстояний 3:5:7 следующим образом.

За первую пару принимаются две лопасти 4, 3, расстояние между которыми 18 градусов, между следующей парой лопастей 3,3-30 градусов, и затем третья пара лопастей 3,4-42 градуса.

Для двенадцати лопастей винта такое соотношение выполняется периодически - четыре раза, т.е.: (18°+30°+42°)·4=360°.

Редуктор 5 имеет выходной вал (не показан), на котором закреплена и вращается втулка 2, и входной вал 6, на который передается крутящий момент от двигателей (не показан). Туннель 1 имеет профилированную входную часть 7, цилиндрическую часть 8 и выходную часть 9. Оба ряда лопастей 3, 4 расположены в цилиндрической части 8 туннеля. Неподвижные лопатки 10 спрямляющего аппарата установлены наклонно к поверхности цилиндрической части 8 туннеля и закреплены одним концом на поверхности цилиндрической части 8 туннеля, а другим концом на статоре 11, внутри которого закреплен редуктор 5. Опоры лопаток 10 на цилиндрической части 8 туннеля расположены симметрично относительно входного вала 6 редуктора 5. Число лопаток 10 четное, при этом крепление каждой из лопаток 10 к статору 11 смещено по отношению крепления той же лопатки 10 к поверхности цилиндрической части 8 туннеля 1 в направлении по часовой стрелке со стороны входной части туннеля.

Работа рулевого винта вертолета, установленного в туннеле, состоит в следующем.

Часть мощности двигателей передается в виде крутящего момента на входной вал 6 редуктора 5 и далее через выходной вал вращает втулку 2 совместно с лопастями 3, 4, которые засасывают воздух на входе в туннель 1.

На вращающихся лопастях 3, 4 создается разрежение и в результате образуется тяга лопастей. Воздух разгоняется в туннель 1 и выбрасывается из туннеля. Движущийся к выходу из туннеля воздух встречается с лопатками 10 спрямляющего аппарта.

Лопатки спрямляющего аппарата уменьшают закручивание потока воздуха, что увеличивает силу тяги винта, т.е. повышает аэродинамическое качество.

Лопасти 3, 4 вращаются и таким образом перемещаются относительно неподвижных лопаток 10, на которых также образуется разрежение, следовательно, воздушные силы.

Поскольку расположение лопастей 3, 4 и лопаток 10 периодически изменяется по времени, то и скорости воздуха и силы переменны, и взаимодействие сил, потоков воздуха и полей давлений образует акустическое излучение, т.е. шум переменного по времени воздушного потока.

Неподвижные лопатки 10 наклонены относительно корпуса туннеля 1 и вращающихся лопастей 3, 4. Вследствие этого наклона среднее расстояние между лопастями и лопатками конструктивно увеличено и переменные силы взаимодействия уменьшаются, что приводит к уменьшению акустического излучения.

Частоты переменных воздушных сил равны частотам акустического излучения, т.е. частотам шума.

Расположенные в двух плоскостях лопасти 3, 4, которые вращаются в одну сторону, по существу являются соосным винтом в туннеле 1, и эффект соосности дополнительно увеличивает тягу лопастей 3, 4 и аэродинамическое качество винта.

Таким способом достигается увеличение аэродинамического качества.

Предлагаемое соотношение угловых расстояний между ближайшими лопастями 3, 4 в общей для двух рядов последовательности лопастей в каждой из последовательных по вращению трех пар как 3:5:7 обеспечивает решение технической задачи, а именно широкий спектр акустического излучения от взаимодействия полей давлений вращающихся лопастей 3, 4 с неподвижными лопатками 10.

Поля давлений воздуха на лопастях 3, 4 и на лопатках 10, крепящих статор 11 к стенке туннеля 1, взаимодействуют друг с другом в момент прохождения лопастей 3, 4 и лопаток 10 на минимальном расстоянии. Иначе говоря, частоты акустического излучения равны частотам «встреч» вращающихся лопастей 3, 4 и неподвижных лопаток 10.

Подсчитаем частоты акустического излучения по известной формуле:

F = f 360 Δ ψ n

где:

f - частота вращения рулевого винта [Гц],

Δψ - шаг между лопастями [град],

n - количество лопаток спрямляющего аппарата,

F - частота акустического излучения при шаге между лопатками ΔΨ1.

Подсчитаем, например, частоту «встреч» для винта с двенадцатью лопастями при равномерном шаге между лопастями (360°/12=30°) при частоте вращения втулки (лопастей) 50 Гц и шести лопатках, крепящих статор.

Частота «встреч» (звуковая частота) = 50×12×6=3600 Гц

Практически вся энергия акустического излучения сосредоточена вблизи частоты 3600 Гц

При неравномерном шаге 3:5:7 между парами лопастей, что для 12-лопастного винта соответствует шагу 18 град., 30 град., 42 град., частоты акустического излучения вычисляются по формуле:

Частота «встреч» = 50-6-(360°/18°, 360°/30°, 360°/42°)=

=300·(20, 12, 8.75)=

=6000 Гц; 3600 Гц; 2570 Гц

Из формулы очевидно, что присутствуют три базовые частоты 6000 Гц, 3600 Гц, 2570 Гц и акустическая энергия излучается на трех частотах, т.е. в диапазоне 2570÷6000 Гц. Сравнительно с излучением на одной частоте распределение энергии акустического излучения в трех диапазонах имеет следствием снижение максимального уровня и соответственно уменьшение акустического воздействия на окружающую среду и акустической заметности летательного аппарата.

Диаметрально противоположное расположение лопастей 3, 4 обеспечивает идеальную балансировку винта по центробежной силе лопастей, результирующая величина вектора которой равна нулю.

Описанная выше совокупность конструктивных особенностей рулевого винта вертолета, установленного в туннеле, позволила решить поставленную техническую задачу с сохранением всех положительных свойств и качеств прототипа, а именно обеспечение наименьшего акустического излучения винта с минимально возможным уровнем вибраций вследствие взаимно уравновешенных центробежных сил при одновременном повышении аэродинамического качества рулевого винта.

Похожие патенты RU2538497C1

название год авторы номер документа
Устройство компенсации реактивного момента несущего винта вертолета 2021
  • Желваков Владимир Валентинович
RU2788013C1
Устройство компенсации реактивного момента несущего винта вертолета 2021
  • Желваков Владимир Валентинович
RU2796703C2
УСТРОЙСТВО ДЛЯ ГАШЕНИЯ ВРАЩАЮЩЕГО МОМЕНТА, ПРЕДНАЗНАЧЕННОЕ ДЛЯ ВЕРТОЛЕТА 1995
  • Анри-Жам Ришар Марз
  • Венсан Жан Люк Рутьо
  • Жий Луи Арно
  • Реми Элиан Арно
RU2138422C1
УСТРОЙСТВО ДЛЯ КОМПЕНСАЦИИ РЕАКТИВНОГО МОМЕНТА НЕСУЩЕГО ВИНТА ВИНТОКРЫЛОГО ЛЕТАТЕЛЬНОГО АППАРАТА 1995
  • Андре Мишель Луи Декен[Fr]
  • Луи Жозеф Дальдоссо[Fr]
  • Анри Фернан Барке[Fr]
RU2099247C1
ВЕРТОЛЕТ С ПОПЕРЕЧНЫМ КАНАЛОМ 2013
  • Шнайдер Саша
  • Шимке Дитер
  • Веле Кристиан
RU2557683C2
ПРОФИЛИРОВАННАЯ КОНСТРУКЦИЯ ДЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА ИЛИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2019
  • Джеа Агилера, Фернандо
  • Барье, Рафаэль
  • Грубер, Метью, Саймон, Поль
  • Полачек, Сириль
  • Поссон, Элен, Доминик, Жанна
RU2789369C2
ХВОСТОВОЕ ОПЕРЕНИЕ ВЕРТОЛЕТА 2013
  • Крайтмаир-Штек Вольфганг
  • Хебеншпергер Михаэль
RU2575969C2
Профилированная аэродинамическая конструкция и турбомашина для летательного аппарата (варианты) 2019
  • Хеа Агилера Фернандо
  • Грубер Матьё Симон Поль
  • Рью Жорже Жан Ксавье
RU2782555C2
РОТОР "ВОЗДУШНОЕ КОЛЕСО". ГИРОСТАБИЛИЗИРОВАННЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ И ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА, ИСПОЛЬЗУЮЩИЕ РОТОР "ВОЗДУШНОЕ КОЛЕСО", НАЗЕМНОЕ/ПАЛУБНОЕ УСТРОЙСТВО ИХ ЗАПУСКА 2013
  • Кузиков Сергей Юрьевич
RU2538737C9
РОТОРНЫЙ ДИСПЕРГАТОР 1999
  • Макаренко В.Г.
  • Макаренко М.Г.
  • Кильдяшев С.П.
RU2156648C1

Иллюстрации к изобретению RU 2 538 497 C1

Реферат патента 2015 года РУЛЕВОЙ ВИНТ ВЕРТОЛЕТА, УСТАНОВЛЕННЫЙ В ТУННЕЛЕ

Изобретение относится к авиационной технике, а именно к конструкциям рулевых винтов, служащих для компенсации реактивного момента несущего винта и путевого управления вертолетом. Рулевой винт вертолета, установленный в туннеле, имеющем профилированную входную, цилиндрическую и выходную части, состоит из статора, внутри которого закреплен редуктор с входным валом и выходным валом, на котором установлена втулка с закрепленными на ней лопастями, неподвижных лопаток спрямляющего аппарата, установленных наклонно к поверхности туннеля и закрепленных одним концом на поверхности цилиндрической части туннеля, а другим на статоре. Рулевой винт содержит двенадцать лопастей, установленных в два ряда. Второй ряд лопастей расположен в цилиндрической части туннеля. Расстояние между рядами 0,08-0,20 радиуса рулевого винта, при этом угловые расстояния между ближайшими лопастями в общей для двух рядов последовательности лопастей в каждой из последовательных по вращению трех пар лопастей соотносятся как 3:5:7, а количество лопастей в каждом ряду четное и установлены они диаметрально противоположно. Опоры лопаток спрямляющего аппарата на цилиндрической поверхности туннеля расположены симметрично относительно оси входного вала, а крепление каждой из лопаток к статору смещено по отношению крепления той же лопатки к поверхности туннеля в направлении по часовой стрелке со стороны профилированной входной части туннеля. Достигается снижение акустического излучения рулевого винта с минимально возможным уровнем вибраций при одновременном повышении его аэродинамического качества. 4 ил.

Формула изобретения RU 2 538 497 C1

Рулевой винт вертолета, установленный в туннеле, который имеет профилированную входную, цилиндрическую и выходную части, состоящий из статора, внутри которого закреплен редуктор с входным валом и выходным валом, на котором установлена втулка с закрепленными на ней лопастями, неподвижных лопаток спрямляющего аппарата, установленных наклонно к поверхности туннеля и закрепленных одним концом на поверхности цилиндрической части туннеля, а другим на статоре, отличающийся тем, что рулевой винт содержит двенадцать лопастей, причем втулка снабжена вторым рядом лопастей, расположенных в цилиндрической части туннеля с расстоянием между рядами 0,08-0,20 радиуса рулевого винта, при этом угловые расстояния между ближайшими лопастями в общей для двух рядов последовательности лопастей в каждой из последовательных по вращению трех пар лопастей соотносятся как 3:5:7, а количество лопастей в каждом ряду четное и установлены они диаметрально противоположно, опоры лопаток на цилиндрической поверхности туннеля расположены симметрично относительно оси входного вала и число лопаток четное, а крепление каждой из лопаток к статору смещено соответственно по отношению крепления той же лопатки к поверхности туннеля, в направлении по часовой стрелке со стороны профилированной входной части туннеля.

Документы, цитированные в отчете о поиске Патент 2015 года RU2538497C1

УСТРОЙСТВО ДЛЯ ГАШЕНИЯ ВРАЩАЮЩЕГО МОМЕНТА, ПРЕДНАЗНАЧЕННОЕ ДЛЯ ВЕРТОЛЕТА 1995
  • Анри-Жам Ришар Марз
  • Венсан Жан Люк Рутьо
  • Жий Луи Арно
  • Реми Элиан Арно
RU2138422C1
US 2009014581 A1, 15.01.2009
WO 9302916 A1, 18.02.1993
WO 9828187 A1, 02.07.1998

RU 2 538 497 C1

Авторы

Бурцев Борис Николаевич

Вагин Александр Юрьевич

Аветисян Викторина Владимировна

Даты

2015-01-10Публикация

2013-12-03Подача