УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ДИЭЛЕКТРИКОВ ПРИ НАГРЕВЕ Российский патент 2015 года по МПК G01R27/26 

Описание патента на изобретение RU2539124C1

Изобретение относится к области измерительной высокочастотной техники измерения и может быть использовано для измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь в материалах резонансным методом при высоких температурах не менее 2000°C.

Известны устройства для измерения параметров диэлектриков при нагреве, например, свидетельство на полезную модель 18201 U1 RU от 07.12.2000 г., МПК G01R 27/26.

Измерительный резонатор для измерения диэлектрических свойств материалов при нагреве исследуемого образца включает цилиндрический резонатор, ограниченный с одной стороны неподвижной торцевой стенкой волновода СВЧ, а с другой - короткозамыкающим поршнем, связанным с механизмом настройки. Цилиндр резонатора выполнен из 2-х частей, верхняя из которых снабжена рубашкой охлаждения, а нижняя установлена внутри нагревателя, который выполнен в виде проволочной спирали, при этом между ними размещена диэлектрическая пластина.

Измерения диэлектрических характеристик в данном устройстве осуществляется в условиях нагрева образцов. В качестве нагревателя используется проволочная спираль, охватывающая часть резонатора и работающая в атмосфере защитного газа. Материалами для проволочного нагревателя, имеющего необходимый ресурс работы, могут служить хромоникелевые сплавы типа нихром, фехраль. Они обеспечивают температуру нагрева не более 1200°C. Для нагрева на более высокую температуру необходимо применять молибден или вольфрам, работающие только в высоком вакууме 10-5 мм рт. ст. Эти материалы плохо поддаются механической обработке, поэтому изготовление нагревательных элементов связано с большими технологическими трудностями, что препятствует созданию устройств для измерения диэлектрических параметров материалов при нагреве до высоких температур не менее 2000°C. Кроме этого перемещение штока с поршнем осуществляется вручную винтовой парой при отсутствии в рассматриваемом устройстве конструктивных элементов измерения перемещение штока с поршнем для обеспечения фиксации положения резонанса в процессе измерения.

Наиболее близким по техническому решению является устройство по свидетельству на полезную модель 24292 U1 RU, МПК G01R 27/26 от 13.11.2001 г. "Измерительная ячейка для измерения параметров диэлектриков на СВЧ".

Устройство содержит термоизолированный герметичный корпус, установленный на нем цилиндрический резонатор, снабженный нагревателем. Верхний торец цилиндра резонатора закрыт неподвижной крышкой, являющейся верхней торцевой стенкой резонатора, связанный с трактом СВЧ. Нижняя торцевая стенка резонатора образована поршнем, установленным на вертикальном штоке, который неподвижно соединен с ходовым винтом механического приводного механизма комбинированного типа, включающего систему "винт-гайку" и шестеренчатую пару. Для измерения температуры внутри штока предусмотрен канал для размещения термопары и подвод нейтрального газа для защиты нагревателя.

К недостаткам рассматриваемого устройства относится то, что точную установку поршня в резонаторе в положение резонанса, а также обеспечение многократно повторяемой фиксации этого положения в процессе измерения осуществляется механическим приводом, включающем 2-ступенчатую винтовую пару.

Работа движущей системы "винт-гайка" неизбежно связана с наличием люфта в винтовом соединении, особенно при больших шагах резьбы. Люфт в резьбе сказывается на точности измерения осевого перемещения поршня и соответственно находящегося на нем образца. Метод объемного резонатора для измерения диэлектрических характеристик материалов основан на сравнительном измерении резонаторной длины при фиксации положения поршня с образцом и без образца.

Поэтому погрешности фиксации поршня в резонансном положении напрямую влияют на точность измерения диэлектрических характеристик. В рассматриваемом устройстве отдельного точного измерителя перемещений не предусмотрено, а отсчет осевого перемещения может осуществляться только по осевому ходу винта в системе "винт-гайка", что не может обеспечить высокую точность измерения.

В описании данного устройства указано, что цилиндрический резонатор может быть снабжен нагревателем. Рассмотрение конструктивных элементов механического привода и их размещение показывает, что установить нагреватель известной конструкции большой мощности для достижения высоких температур невозможно, так как это вызывает необходимость введения значительной по размерам теплоизоляции, которая может обеспечить нормальную работу механического привода перемещения штока с поршнем.

Разрешить это противоречие в рассматриваемой конструкции невозможно. Кроме того, в описании указано, что верхняя торцевая стенка резонатора является неохлаждаемой, поэтому работоспособность рассматриваемой конструкции не может быть реализована при высоких температурах нагрева.

Целью изобретения является повышение точности измерений и расширение диапазона нагрева исследуемых образцов до величин не менее 2000°C.

Это достигается тем, что предложено устройство для измерения параметров диэлектриков при нагреве, содержащее термоизолированный герметичный корпус, нагреватель, цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком, отличающееся тем, что торцевая стенка волновода СВЧ выполнена водоохлаждаемой, а нагреватель включает ряд трубчатых элементов из графита с односторонним выводом на токоподводы, при этом поршень установлен на полом составном штоке, нагреваемая часть которого выполнена в виде тонкостенной трубы из термостойкого материала, а другая в виде трубы с водяным охлаждением и снабжена фланцем с уплотнительной прокладкой, причем к водоохлаждаемой части штока герметично подсоединен оптический пирометр, шток закреплен на платформе модуля линейного перемещения, причем механизм перемещения поршня со штоком включает два последовательно работающих модуля линейных перемещений с электромеханическими приводами, совмещенных с единым датчиком измерения перемещений, а подвод защитного газа размещен в зоне окуляра пирометра.

Проведенная авторами на макетных образцах проверка работоспособности совокупности технических решений, заложенных в заявляемом устройстве, показала более высокий уровень достигнутых характеристик по сравнению с прототипом по точности измерения и максимальной температуре прогрева.

На приведенном чертеже изображен общий вид варианта исполнения заявляемого устройства.

Устройство для измерения параметров диэлектриков при нагреве включает теплоизолированный герметичный корпус 1, трубчатый графитовый нагреватель 2, цилиндрический резонатор 3, водоохлаждаемую торцевую стенку волновода СВЧ 4, волновод СВЧ 5, поршень 6, нагреваемую часть штока 7, водоохлаждаемую часть штока 8, фланец 9, прокладку 10, пирометр 11, платформу модуля линейного перемещения 13, модуль микрометрического линейного перемещения 12, серводвигатель 14, стойку рельсовую 15, траверсу 16, модуль линейного перемещения 17, серводвигатель 18, линейный измеритель расстояний 19, загрузочное окно 20, подвод защитного газа 21, токоподводы 22, блок управления 23 и блок формирования и обработки СВЧ-сигнала 24.

Работа устройства и взаимодействие его конструктивных элементов осуществляется следующим образом.

В начальном положении поршень находится вне цилиндра резонатора 3, функцию которого выполняет часть внутренней трубы нагреватель 2. При включении серводвигателя 18 модуля ускоренного подъема 17 траверса 16, закрепленная на 2-х рельсовых стойках 15 перемещается вверх. Вместе с траверсой перемещается закрепленный на ней модуль микрометрического линейного перемещения 12, на платформе 13 которой закреплен полый составной шток, включающий нагреваемую часть 7 и водоохлаждаемую часть 8. При достижении положения поршня 6, близкого к резонансному, модуль 17 отключают, при этом одновременно посредством фланца 9 с прокладкой 10 осуществляют герметизацию рабочей зоны нагревателя. Затем включают модуль 12, обеспечивающий малые перемещения поршня в положение резонанса, которое фиксируется блоком 23.

Суммарное перемещение поршня от начального положения до положения резонанса отсчитывают измерителем линейных перемещений 19 типа MICROSYN с точностью до 0,01 мм. Обратный ход штока с поршнем осуществляют модулем ускоренного линейного перемещения 17 до исходного положения согласно показаниям измерителя расстояний 19, которые совпадают с уровнем загрузочного окна 20.

Второй этап процесса измерения диэлектрических параметров включает установку образца на поршень 6 через загрузочное окно 20 и повторение вышеописанных действий. При этом разница суммарного перемещения, отмеченная по показаниям измерителя расстояний, в обоих случаях и является величиной изменения резонансной длины, по которой определяют значение диэлектрической проницаемости материала образца.

Нагрев рабочей зоны проводят предварительно. Электропитание к нагревателю из графита подводят через токоподводы 22, а величину тока определяют исходя из заданной температуры испытаний. При этом перед включением нагревателя проводят подачу защитного газа азота в рабочую зону и воды в системы охлаждения корпуса нагревателя, охлаждаемой части штока и торцевой стенки волновода СВЧ.

Значение температуры в заявляемом устройстве регистрируют пирометром 11, причем для обеспечения дополнительного охлаждения оптики подача азота осуществляется в зоне окуляра.

Управление вышеописанными действиями механизмов в заявляемом устройстве осуществляют автоматически по программе, заданной управляющим блоком 23, а радиометрические измерения обеспечивают блоком формирования и обработки СВЧ-сигналов 24.

Заявляемое устройство для измерения параметров диэлектриков при нагреве обеспечивает более высокую точность измерений при расширенном диапазоне температур вплоть до 2000°C и значительно сокращает время проведения измерений за счет автоматизации процесса.

Источники информации

1. Свидетельство на полезную модель 18201 U1, Ru от 07.12.2000 г., МПК G01R 27/26.

2. Свидетельство на полезную модель 24292 U1, Ru от 13.11.2001 г., МПК G01R 27/26.

Похожие патенты RU2539124C1

название год авторы номер документа
Способ измерения параметров диэлектриков при нагреве и устройство для его осуществления 2016
  • Крылов Виталий Петрович
  • Платонов Виктор Васильевич
  • Забежайлов Андрей Олегович
  • Горшков Николай Анатольевич
RU2631014C2
Устройство для измерения диэлектрических свойств материалов при нагреве 2020
  • Крылов Виталий Петрович
  • Жителев Александр Евгеньевич
  • Горшков Николай Анатольевич
  • Антонов Владимир Викторович
  • Хамицаев Анатолий Степанович
RU2744487C1
Устройство для измерения параметров диэлектриков на сверхвысоких частотах 2023
  • Крылов Виталий Петрович
  • Горшков Николай Анатольевич
  • Забежайлов Максим Олегович
RU2812205C1
Устройство для измерений диэлектрических свойств материалов при высокотемпературном нагреве 2021
  • Крылов Виталий Петрович
  • Горшков Николай Анатольевич
  • Суханов Игорь Евгеньевич
  • Титов Николай Сергеевич
RU2763515C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ДИЭЛЕКТРИКОВ НА СВЕРХВЫСОКИХ ЧАСТОТАХ 2013
  • Крылов Виталий Петрович
  • Платонов Виктор Васильевич
  • Шадрин Александр Петрович
  • Титов Николай Сергеевич
  • Клакович Андрей Михайлович
RU2539125C1
СВЧ резонатор для измерения температурных параметров диэлектриков 1983
  • Литовченко Алексей Васильевич
  • Смирнов Герман Александрович
  • Сидоренко Нина Сергеевна
SU1141345A1
Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления 2018
  • Крылов Виталий Петрович
  • Чирков Роман Александрович
  • Забежайлов Максим Олегович
  • Миронов Роман Александрович
  • Суханов Игорь Евгеньевич
  • Титов Николай Сергеевич
RU2688579C1
Способ определения диэлектрических свойств деструктирующих материалов при нагреве 2022
  • Крылов Виталий Петрович
  • Жителев Александр Евгеньевич
  • Чирков Роман Александрович
RU2795249C1
Устройство для определения температурной зависимости параметров диэлектриков 1990
  • Фридрик Ефим Алексеевич
  • Трефилов Николай Александрович
  • Пасичный Владислав Васильевич
SU1762202A1
Способ определения диэлектрических свойств деструктирующих материалов при нагреве 2023
  • Крылов Виталий Петрович
  • Жителев Александр Евгеньевич
  • Чирков Роман Александрович
RU2813651C1

Реферат патента 2015 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ДИЭЛЕКТРИКОВ ПРИ НАГРЕВЕ

Изобретение относится к технике измерения диэлектриков методом объемного резонатора при нагреве в диапазоне температур до 2000°C. Устройство содержит цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком. При этом торцевая стенка волновода СВЧ выполнена водоохлаждаемой, а нагреватель содержит ряд трубчатых элементов из графита с односторонним выводом на токоподводы. Поршень установлен на полом составном штоке, нагреваемая часть которого выполнена в виде тонкостенной трубы из термостойкого материала, а другая в виде трубы с водяным охлаждением и снабжена фланцем с уплотнительной прокладкой. Причем к водоохлаждаемой части штока герметично подсоединен оптический пирометр, а шток закреплен на платформе модуля линейного перемещения. Механизм перемещения поршня со штоком включает два последовательно работающих модуля линейных перемещений с электромеханическими приводами, совмещенных с единым датчиком измерения перемещений, а подвод защитного газа размещен в зоне окуляра пирометра. Технический результат заключается в повышении точности измерения параметров диэлектриков при температурах до 2000°C и автоматизации процесса измерения. 1 ил.

Формула изобретения RU 2 539 124 C1

Устройство для измерения параметров диэлектриков при нагреве, содержащее цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком, отличающееся тем, что торцевая стенка волновода СВЧ выполнена водоохлаждаемой, а нагреватель включает ряд трубчатых элементов из графита с односторонним выводом на токоподводы, при этом поршень установлен на полом составном штоке, нагреваемая часть которого выполнена в виде тонкостенной трубы из термостойкого материала, а другая в виде трубы с водяным охлаждением и снабжена фланцем с уплотнительной прокладкой, причем к водоохлаждаемой части штока герметично подсоединен оптический пирометр, а шток закреплен на платформе модуля линейного перемещения, причем механизм перемещения поршня со штоком включает два последовательно работающих модуля линейных перемещений с электромеханическими приводами, совмещенных с единым датчиком измерения перемещений, а подвод защитного газа размещен в зоне окуляра пирометра.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539124C1

Универсальная машина для наклейки этикеток на консервные банки 1958
  • Воронина В.А.
  • Гуляев В.Н.
SU119124A1
СВЧ-измерительная ячейка 1990
  • Менцер Ефим Пиневич
SU1702263A1
ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ 0
  • А. В. Антонов, В. Батура, Г. И. Гладышев, В. С. Дударенко,
  • Ю. А. Егоршин, В. Г. Смолий В. М. Шамрин
  • Научно Исследовательский Институт Радиотехнических Проблем
SU221083A1
Устройство для измерения параметров диэлектриков на сверхвысоких частотах 1990
  • Крылов Виталий Петрович
SU1737327A1
US 4544880 A, 01.10.1985

RU 2 539 124 C1

Авторы

Крылов Виталий Петрович

Платонов Виктор Васильевич

Шадрин Александр Петрович

Титов Николай Сергеевич

Суханов Игорь Евгеньевич

Даты

2015-01-10Публикация

2013-08-27Подача