СПОСОБ ДИФФУЗИОННОЙ СВАРКИ СПЛАВОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА С ТИТАНОМ И ЕГО СПЛАВАМИ Российский патент 2015 года по МПК B23K20/22 B23K103/14 

Описание патента на изобретение RU2539247C1

Изобретение относится к способам неразъемного соединения изделий из сплавов на основе никелида титана (TiNi, нитинол) с изделиями из титана и его сплавов, и представляет собой диффузионную сварку с использованием промежуточной прослойки. Способ может применяться в различных областях промышленности при получении термомеханических устройств, имплантируемых конструкций, применяемых в медицине и т.д.

Известен способ соединения сплавов на основе никелида титана (Ti-54,2% Ni) и титанового сплава ВТ6 с помощью диффузионной сварки при температуре 850-950°C [Сенкевич К.С. и др. Особенности формирования диффузионного соединения TiNi - ВТ6// Металловедение и термическая обработка металлов, 2013, №8]. Недостатком его является формирование в зоне сварки хрупких интерметаллидов, обогащенных титаном (Ti2Ni), которые снижают прочность соединения. Максимальная прочность соединения составляет 170 МПа.

Наиболее близким к заявляемому по технической сущности и достигаемому эффекту является способ-прототип соединения сплавов на основе никелида титана с использованием промежуточной прослойки из ниобия (US 20110009979). Способ позволяет получать соединение за счет формирования в зоне соединения твердых растворов титана и никеля с ниобием. Способ-прототип может позволить соединять сплавы на основе никелида титана с различными материалами, в том числе титановыми сплавами. Применение промежуточной прослойки из ниобия позволяет образовывать прочное сварное соединение за счет образования промежуточной диффузионной зоны, состоящей из твердых растворов титана и никеля с ниобием. Недостатком этого способа является высокая температура процесса соединения (1170-1275°C), при которой происходит радикальное изменение микроструктуры титана и его сплавов - интенсивный рост зерна, формирование пластинчатой микроструктуры из-за превышения температуры полиморфного превращения в титане (около 890°C) и титановых сплавах (980-1000°C), из-за чего происходит существенное снижение их механических свойств.

Задачей изобретения является получение высокопрочного неразъемного соединения сплавов на основе никелида титана с титаном и его сплавами.

Техническим результатом является сохранение физико-механических свойств и микроструктуры соединяемых сплавов на основе титана за счет снижения температуры диффузионной сварки сплавов на основе никелида титана и титана.

Для решения поставленной задачи поверхности изделий из сплавов на основе никелида титана, ниобия и титана или его сплавов, очищают от оксидов, после чего изделие из сплава на основе никелида титана соединяют только с прослойкой из ниобия, нагревают до температуры 1170-1190°C, выдерживают в течение 1-15 минут, охлаждают и приводят в контакт со вторым изделием из титана или его сплава стороной, содержащей слой ниобия, нагревают до температуры 850-950°C в защитной атмосфере или вакууме, прикладывают давление 1-15 МПа, выдерживают в течение 5-60 минут и охлаждают.

На первом этапе изделие из никелида титана и промежуточную прослойку (в виде фольги, листа или напыленного слоя ниобия, полученного различными способами напыления покрытий) устанавливают друг на друга в камере вакуумной установки диффузионной сварки или вакуумной печи, создают вакуум или защитную среду из инертных газов, нагревают до температур 1170-1190°C, выдерживают в течение 1-15 минут и охлаждают. Температура соединения выбирается с учетом выделения жидкой фазы при взаимодействии TiNi с Nb при температуре выше 1170°C. Для предотвращения избыточного выделения жидкой фазы она не должна превышать 1190°C. При данных температурах не происходит существенных изменений в микроструктуре и физико-механических свойствах сплавов на основе никелида титана.

Время выдержки не должно быть меньше 1 минуты, достаточной для прогрева соединяемых изделий и выделения жидкой фазы, и не должно превышать 15 минут для предотвращения избыточного выделения жидкой фазы.

Прослойка из ниобия может быть в виде фольги или листа. Прослойка может быть нанесена на образцы из сплавов на основе никелида титана различными методами напыления покрытий. Прослойка должна расходоваться на образование жидкой фазы в контактной зоне со сплавом на основе никелида титана, и далее оставшейся слой соединяется с титаном/титановым сплавом в твердой фазе. Минимальная толщина прослойки для обеспечения вышеперечисленных условий должна быть не менее 50 мкм. Для минимизации содержания свободного ниобия в зоне сварки, желательно, чтобы прослойка не превышала 500 мкм.

На втором этапе соединенную пару сплав на основе никелида титана, содержащий слой из ниобия, и изделие из титана/титанового сплава устанавливают в камере установки диффузионной сварки или вакуумной печи друг на друга, так, чтобы слой ниобия контактировал с поверхностью титана/титанового сплава. При этом предварительно свободная сторона промежуточной прослойки дополнительно подготавливается механически и/или химически для удаления оксидов на поверхности. После нагрева до температуры 850-950°C прикладывается давление 1-15 МПа, и осуществляют выдержку в течение 5-60 минут, затем проводят охлаждение. При температуре 850-950°C титан и сплавы на его основе обладают достаточной пластичностью, обеспечивающей формирование физического контакта между соединяемыми поверхностями, и обеспечивается развитие диффузионных процессов, способствующих формированию промежуточной диффузионной зоны. Выше температуры 950°C возможны сильный рост зерен в титане/титановом сплаве, а также неконтролируемая деформация из-за повышенной пластичности. Время диффузионной сварки должно обеспечивать полное протекание диффузионных процессов и залечивание пор и в зависимости от температуры сварки может составлять 5-60 минут. Сварочное давление должно обеспечивать максимально полный контакт за счет деформации микровыступов на соединяемых поверхностях. В зависимости от выбранной температуры диффузионной сварки оно должно составлять не менее 1 МПа и не более 15 МПа для избежания избыточной деформации соединяемых изделий.

Предлагаемые температурные режимы диффузионной сварки сплавов на основе никелида титана и титана/титанового сплава (850-950°C) ниже используемых в способе-прототипе (1170-1275°C), что позволяет избежать существенных изменений в микроструктуре и свойствах титана и его сплавов.

Примеры реализации заявленного способа

1. Листовые образцы из сплава на основе никелида титана марки ТН1 (Ti-54,2% Ni) соединялись с образцами из титанового сплава ВТ6 через прослойку из листа ниобия толщиной 0,3 мм по двухступенчатому режиму: 1) образцы из сплава на основе никелида титана и прослойку из ниобия механически полировали, протравливали в водном растворе соляной и азотной кислоты, устанавливали в камере вакуумной печи, вакуумировали, осуществляли нагрев до температуры 1185°C, выдерживали в течение 1 минут, охлаждали до комнатной температуры; 2) образцы из соединенной пары сплав на основе никелида титана-ниобий и образцы из сплава ВТ6 механически полировали, протравливали в водном растворе соляной и азотной кислоты, помещали в камеру установки диффузионной сварки так, чтобы слой ниобия контактировал с поверхностью титанового сплава, вакуумировали, осуществляли нагрев до температуры 900°C, прикладывали давление 10 МПа, выдерживали в течение 60 минут, охлаждали до комнатной температуры. Прочность сварного соединения на сдвиг составила 435 МПа.

2. Листовые образцы из сплава на основе никелида титана марки ТНМЗ (Ti-48,2% Ni-2,5% Cu) соединялись с образцами из титана марки ВТ-1-0 через прослойку из фольги ниобия толщиной 50 мкм по двухступенчатому режиму: 1) образцы из сплава на основе никелида титана и прослойку из ниобия механически полировали, протравливали в водном растворе соляной и азотной кислоты, устанавливали в камере вакуумной печи, вакуумировали, осуществляли нагрев до температуры 1179°C, выдерживали в течение 5 минут, охлаждали до комнатной температуры; 2) образцы из соединенной пары сплав на основе никелида титана-ниобий и образцы из сплава ВТ6 механически полировали, протравливали в водном растворе соляной и азотной кислоты, помещали в камеру установки диффузионной сварки так, чтобы слой ниобия контактировал с поверхностью титана, вакуумировали, осуществляли нагрев до температуры 850°C, прикладывали давление 10 МПа, выдерживали в течение 20 минут, охлаждали до комнатной температуры. Прочность сварного соединения на сдвиг составила 416 МПа.

3. Листовые образцы из сплава на основе никелида титана марки ТН1 (Ti-54,2% Ni) соединялись с образцами из титанового сплава ВТ6 через прослойку из напыленного слоя ниобия толщиной 0,1 мм по двухступенчатому режиму: 1) образец из сплава на основе никелида титана механически полировали, протравливали в водном растворе соляной и азотной кислоты, после чего наносили на него слой из ниобия методом плазменного напыления, загружали в камеру вакуумной печи, вакуумировали, осуществляли нагрев до температуры 1170°C, выдерживали в течение 1 минут, охлаждали до комнатной температуры; 2) образцы из соединенной пары сплав на основе никелида титана-ниобий и образцы из сплава ВТ6 механически полировали, протравливали в водном растворе соляной и азотной кислоты, помещали в камеру установки диффузионной сварки так, чтобы слой ниобия контактировал с поверхностью титанового сплава, вакуумировали, осуществляли нагрев до температуры 900°C, прикладывали давление 10 МПа, выдерживали в течение 60 минут, охлаждали до комнатной температуры. Прочность сварного соединения на сдвиг составила 430 МПа.

Заявленный способ позволяет сохранить исходный высокий уровень механических свойств титана и его сплавов за счет проведения процесса сварки при температуре ниже полиморфного превращения (Ас3). Исследование механических свойств сварных соединений, полученных по заявленному способу диффузионной сварки, осуществляемому при температуре ниже температуры полиморфного превращения, и при пайке через ниобий при температуре 1170°C, соответствующей выбранному способу-прототипу, показало преимущество заявленного способа (см. таблицу). Испытания проводили на листовых полуфабрикатах, соединенных внахлест, при этом площадь сварки существенно превышала площадь сечения соединяемых полуфабрикатов из титанового сплава ВТ6, в результате чего разрушение происходило по основному материалу. Установлено, что механические свойства соединяемых со сплавом на основе никелида титана по заявленному способу полуфабрикатов из титанового сплава ВТ6 значительно выше, чем соединенных по способу-прототипу. Это связано с тем, что при сварке по заявленному способу не происходит существенных изменений в микроструктуре соединяемых полуфабрикатов из титана и его сплавов, в отличие от соединения по способу-прототипу, при котором происходит образование крупнозернистой пластинчатой микроструктуры, наличие которой снижает прочностные свойства и пластичность сплавов.

Таким образом, использование предложенного технического решения позволит получить высокопрочное неразъемное соединение сплавов на основе никелида титана с титаном и его сплавами с высокими физико-механическими свойствами как сварного соединения, так и свариваемого титанового сплава.

Механические свойства титанового сплава ВТ6 Структурное состояние сплава ВТ6 Механические свойства σb, МПа σ0,2, МПа δ, % Крупнозернистая пластинчатая структура после сварки при температуре выше Ac3 970 800 7 Исходная глобулярная структура после сварки при температуре до Ac3 1000 960 14

Похожие патенты RU2539247C1

название год авторы номер документа
СПОСОБ ДИФФУЗИОННОЙ СВАРКИ ИЗДЕЛИЙ ИЗ СПЛАВОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2012
  • Сенкевич Кирилл Сергеевич
RU2504464C1
СПОСОБ СВАРКИ ИЗДЕЛИЙ ИЗ СПЛАВОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА (ВАРИАНТЫ) 2012
  • Сенкевич Кирилл Сергеевич
  • Князев Максим Игоревич
  • Шляпин Сергей Дмитриевич
  • Коллеров Михаил Юрьевич
RU2478027C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2014
  • Маслов Александр Иванович
  • Молоканов Артемий Владимирович
  • Улесов Виктор Викторович
  • Соболев Яков Алексеевич
  • Шалыга Сергей Владимирович
  • Першин Владимир Владимирович
  • Шишурин Александр Владимирович
RU2569441C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЛОИСТОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА ТИТАНОВЫЙ СПЛАВ-АЛЮМИНИД ТИТАНА 2010
  • Мулюков Радик Рафикович
  • Рыбин Валерий Васильевич
  • Валиахметов Олег Раязович
  • Галеев Рафаил Мансурович
  • Зисман Александр Абрамович
  • Счастливая Ирина Алексеевна
  • Назаров Айрат Ахметович
RU2477203C2
Способ получения паяного соединения алюмооксидной керамики с титановым сплавом ВТ1-0 2019
  • Калин Борис Александрович
  • Федотов Иван Владимирович
  • Севрюков Олег Николаевич
  • Пахалюк Владимир Иванович
  • Немчинов Юрий Михайлович
  • Иванников Александр Александрович
  • Сучков Алексей Николаевич
RU2717446C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2015
  • Виноградов Юрий Иванович
  • Маслов Александр Иванович
  • Теплякова Ирина Алексеевна
  • Шалыга Сергей Владимирович
  • Шишурин Александр Владимирович
RU2613003C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ ЗАГОТОВОК И ЛИСТОВ ИЗ РАЗНОРОДНЫХ ТИТАНОВЫХ СПЛАВОВ 2004
  • Лукашкин Н.Д.
  • Соломоник Я.Л.
  • Винокуров А.Я.
RU2266183C1
Способ изготовления заготовки из титанового сплава для деталей газотурбинного двигателя 2015
  • Валиев Роман Русланович
  • Модина Юлия Михайловна
  • Смирнов Иван Валерьевич
  • Валиев Руслан Зуфарович
RU2635989C2
СПОСОБ ДИФФУЗИОННОЙ СВАРКИ ТОНКОСТЕННЫХ СЛОИСТЫХ ТИТАНОВЫХ КОНСТРУКЦИЙ 2013
  • Пешков Алексей Владимирович
  • Булков Алексей Борисович
  • Пешков Владимир Владимирович
  • Балбеков Дмитрий Николаевич
  • Небольсин Станислав Михайлович
  • Мальцев Григорий Валерьевич
RU2569444C2
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2017
  • Аникеев Сергей Геннадьевич
  • Ходоренко Валентина Николаевна
  • Гюнтер Виктор Эдуардович
  • Артюхова Надежда Викторовна
  • Гарин Александр Сергеевич
  • Ясенчук Юрий Феодосович
RU2651846C1

Реферат патента 2015 года СПОСОБ ДИФФУЗИОННОЙ СВАРКИ СПЛАВОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА С ТИТАНОМ И ЕГО СПЛАВАМИ

Изобретение относится к способу диффузионной сварке сплава на основе никелида титана с титаном или его сплавом. Изобретение может быть использовано в различных областях промышленности при получении термомеханических устройств, имплантируемых конструкций, например, применяемых в медицине и т.д. Осуществляют очистку поверхностей соединяемых изделий от оксидов. Устанавливают промежуточную прослойку из ниобия в виде фольги, листа или напыленного слоя с последующим нагревом в вакууме или защитной атмосфере. При этом сначала изделие из сплава на основе никелида титана соединяют только с прослойкой из ниобия, нагревают до температуры 1170-1190˚C и выдерживают в течение 1-15 минут. Затем изделие охлаждают и приводят в контакт со вторым изделием из титана или его сплавов стороной, содержащей слой ниобия. Затем нагревают до температуры 850-950˚C в защитной атмосфере или вакууме, прикладывают давление 1-15 МПа, выдерживают в течение 5-60 минут и охлаждают. Техническим результатом изобретения является сохранение физико-механических свойств и микроструктуры соединяемых сплавов на основе титана за счет снижения температуры диффузионной сварки. 1 табл.

Формула изобретения RU 2 539 247 C1

Способ сварки сплава на основе никелида титана с титаном или его сплавом, включающий очистку поверхностей соединяемых изделий от оксидов, установку промежуточной прослойки из ниобия в виде фольги, листа или напыленного слоя, с последующим нагревом в вакууме или защитной атмосфере, отличающийся тем, что сначала изделие из сплава на основе никелида титана соединяют только с прослойкой из ниобия, нагревают до температуры 1170-1190˚C, выдерживают в течение 1-15 минут, охлаждают и приводят в контакт со вторым изделием из титана или его сплава стороной, содержащей слой ниобия, нагревают до температуры 850-950˚C в защитной атмосфере или вакууме, прикладывают давление 1-15 МПа, выдерживают в течение 5-60 минут и охлаждают.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539247C1

US 2011009979 A1, 13.01.2011
Способ сварки плавлением разнородных металлов 1983
  • Вихман Валерий Борисович
  • Гонсеровский Федор Григорьевич
  • Крылов Борис Сергеевич
SU1127718A1
Способ сварки давлением жаропрочных никелевых сплавов с титановыми 1984
  • Пименова Алиса Захаровна
  • Каракозов Эдуард Сергеевич
  • Лукин Владимир Иванович
  • Курочко Руслан Сергеевич
SU1258661A1
US 20090151819 A1, 18.06.2009
US 7896222 B2, 01.03.2011

RU 2 539 247 C1

Авторы

Сенкевич Кирилл Сергеевич

Даты

2015-01-20Публикация

2013-09-27Подача