Изобретение относится к области горного дела и металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки неметаллов, металлов и металлических сплавов, например шаров в шаровых мельницах, применяемых для размола смеси порошков карбидов и цементирующего металла.
Известно использование карбида титана TiC или нитрида титана TiN в качестве износостойких покрытий, наносимых на поверхности изделий из твердых сплавов [1]. К недостаткам подобных покрытий, помимо дорогостоящей технологии, следует отнести недостаточно прочную адгезию покрытия с поверхностью изделия.
Наиболее близким к заявляемому изобретению является способ создания ионно-плазменным методом износостойкого покрытия, состоящего из нитрида или карбонитрида титана-хрома и содержащего в качестве легирующего компонента цирконий [2]. Недостатками прототипа являются сложность изготовления покрытия и недостаточная степень адгезии покрытия к основе.
Отличительными признаками заявляемого изобретения являются:
- износостойкий приповерхностный слой шара;
- фазовый состав износостойкого приповерхностного слоя шара: гидроксид кобальта Со(ОН)2 и гетерогениты.
Нами экспериментально показано, что шар из кобальтсодержащего твердого сплава снабжен износостойким приповерхностным слоем.
Нами экспериментально установлено, что модификация приповерхностного слоя шара осуществляется соединениями кобальта с водородом и кислородом: гидроксидом кобальта Со(ОН)2 и гетерогенитами.
Сущность заявленного изобретения поясняется нижеследующим описанием.
Нашими опытами показано, что термообработка изделий из кобальтосодержащих сплавов: пластин из твердых сплавов ВК6, ВК8, Т5К10, Т14К8, Т15К6, К20 и Т5 - увеличивает их микротвердость.
Исследование пластин из твердого сплава ВК6 методом рентгеновской фотоэлектронной спектроскопии (РФЭС) [3] показало наличие гидроксильных (ОН)- групп после термообработки. На основании результатов измерения микротвердости, показавших исключительную роль кобальта в ее увеличении, и данных РФЭС было высказано предположение об образовании гидроксида кобальта на поверхности термообработанных образцов.
Однако метод РФЭС способен исследовать лишь поверхность материалов (средняя длина свободного пробега фотоэлектронов равна 3-4 нм) и он не мог выяснить точную химическую формулу соединения, образующегося после термообработки.
По этому было предпринято изучение приповерхностного слоя образцов другим методом, а именно: методом рентгеновской дифрактометрии (РД) [4, 5]. Использовался автоматизированный дифрактометр D8ADVANCE фирмы BRUKER. Применялось монохроматизированное излучение CuKα. При исследовании фазового состава использовались программа EVA и банк данных PDF-2 2006 г.
Отметим, что исследование методом РД проводились в НИТУ МИСиС, причем исследовались те же образцы, результаты измерения которых методом РФЭС использованы при составлении описания заявок №2011150848 «Применение гидроксида кобальта в качестве износостойкого покрытия» и №2011150849 «Способ создания покрытия». При этом никаких новых операций термообработки этих образцов не производилось.
Исследования методом РД подтвердили, что в результате термообработки в приповерхностном слое твердого сплава образуются соединения кобальта с водородом и кислородом, гидроксид кобальта Со(ОН)2 и гетерогениты.
Эти соединения обладают малой твердостью, поэтому их образование не может объяснить наблюдаемые на опыте высокие значения чисел микротвердости. Отсюда следует вывод, что они модифицируют свойства приповерхностных слоев кобальтсодержащих материалов.
Пример 1
Проведена термообработка пластины твердого сплава ВК6 (Фазовый состав в массовых процентах: WC-94, Со-6). В исходном состоянии микротвердость образца равнялась 1850±140 кг/мм2, после термообработки микротвердость возросла и составила 3371±472 кг/мм2.
Пример 2
Проведена термообработка пластины из кобальтсодержащего твердого сплава Т15К6 (фазовый состав в массовых процентах:WC-79, TiC-15, Со-6). В исходном состоянии микротвердость образца равнялась 1800±325 кг/мм2, после термообработки микротвердость возросла и составила 3300±405 кг/мм2.
Пример 3
Проведена термообработка пластины из кобальтсодержащего твердого сплава Т5 (элементный состав в массовых процентах: W-78,5, С-6,5, Та-5,0, Ti-4,0, Со-6,0: фазовый состав в объемных процентах: WC-70, (Ti, Та, W)C-8, (Ti, W)C-7, Со-15). В исходном состоянии микротвердость образца равнялась 1873±352 кг/мм2, после термообработки микротвердость возросла и составила 3217±675 кг/мм2.
Для получения технического результата, изложенного в формуле изобретения, необходимо произвести следующие действия.
1. Осуществить нагрев шара в интервале температур от 100 до 200°С.
2. Можно варьировать длительность нагрева от 0,5 часа до 2,0 часов.
3. В качестве окружающей среды должен использоваться воздух.
В результате диффузии паров воды и кислорода, находящихся в воздухе, в кобальтсодержащий материал и их химического взаимодействия с кобальтом образуются соединения кобальта с водородом и кислородом, модифицирующие приповерхностный слой материала и делающие его износостойким.
Представление о составе, структуре и концентрациях соединений кобальта с водородом и кислородом дают нижеследующие сведения.
В процессе рентгеновских исследований были определены состав и структура гетерогенитов. Одна из модификаций гетерогенитов ромбическая-гетерогенит 3R. Он состоит из трех октаэдров, состоящих из атома кобальта, связанного с шестью атомами кислорода. Октаэдры соединены между собой водородными связями. Химическая формула этого гетерогенита-Co+[O(OH)], т.е. кобальт в нем трехвалентен. Другая модификация гексагональная-гетерогенит 2Н. Он состоит из двух таких же октаэдров. Его химическая формула - СоО(ОН). Концентрации 3R и 2Н-гетерогенитов зависят от условий их получения и могут достигать десятков ат.%. Но всегда суммарная концентрация гетерогенитов превосходит концентрацию гидроксида кобальта Со(ОН)2.
Наши многочисленные опыты показали, что длительность существования подобным образом изготовленных износостойких приповерхностных слоев зависит от температуры и продолжительности нагрева и изменяется от одних до 30 суток. Тем не менее, предлагаемый метод может оказаться весьма полезным в условиях массового производства, шары с износостойкими приповерхностными слоями можно сразу использовать после обработки и многократно создавать подобные слои по мере необходимости.
Использование на практике заявляемого изобретения сулит большие экономические выгоды: простота получения износостойких приповерхностных слоев на шарах из твердосплавного кобальтсодержащего материала позволяет многократно создавать их по мере необходимости.
Источники
1. Третьяков В.И. Основы металловедения и технологии производства спеченных твердых сплавов. - М.: Металлургия, 1976. - С. 499-507.
2. Табаков В.П., Циркин А.В., Чихранов А.В. Режущий инструмент с покрытием. Патент RU 46261 U1 МПК7 С23С 14/32. Опубл. 27. 06. 2005. Патентообладатель - Государственное образовательное учреждение высшего профессионального образования «Ульяновский государственный технический университет».
3. Риггс В., Паркер М. Анализ поверхности методом рентгеновской фотоэлектронной спектроскопии // Методы анализа поверхностей. Под редакцией А. Зандерны. Перевод с английского под редакцией В.В. Кораблева и Н.Н. Петрова. - М.: Мир, 1979. - Гл. 4. - р. 138-199.
4. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. Учебное пособие для вузов. Изд. 4-е, перераб. и доп. - М.: МИСиС, 2002.
5. Кристаллография, рентгенография и электронная микроскопия / Я.С. Уманский, Ю.А. Скаков, А.Н. Иванов, Л.Н. Расторгуев. - М.: Металлургия, 1982. - 632 с.
название | год | авторы | номер документа |
---|---|---|---|
ТВЕРДОСПЛАВНАЯ КОБАЛЬТСОДЕРЖАЩАЯ ПЛАСТИНА СЪЕМНОЙ НАКЛАДКИ ДЛЯ АРМИРОВАНИЯ ШНЕКОВ ЦЕНТРИФУГ | 2013 |
|
RU2539722C1 |
ТВЕРДОСПЛАВНОЕ СВЕРЛО ИЗ КОБАЛЬТСОДЕРЖАЩЕГО МАТЕРИАЛА ДЛЯ ПЕРФОРАТОРА С ИЗНОСОСТОЙКИМ ПРИПОВЕРХНОСТНЫМ СЛОЕМ | 2013 |
|
RU2551341C2 |
НЕПЕРЕТАЧИВАЕМЫЙ ШТАМП ИЗ КОБАЛЬТСОДЕРЖАЩЕГО ТВЕРДОГО СПЛАВА С ИЗНОСОСТОЙКИМ ПРИПОВЕРХНОСТНЫМ СЛОЕМ | 2015 |
|
RU2596537C1 |
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКОГО ПРИПОВЕРХНОСТНОГО СЛОЯ В КОБАЛЬТСОДЕРЖАЩЕМ ТВЕРДОСПЛАВНОМ ИЗДЕЛИИ В ВИДЕ ШТАМПА | 2015 |
|
RU2599315C1 |
СПОСОБ СОЗДАНИЯ ИЗНОСОСТОЙКОГО ПРИПОВЕРХНОСТНОГО СЛОЯ В КОБАЛЬТСОДЕРЖАЩЕМ МАТЕРИАЛЕ | 2014 |
|
RU2620218C2 |
СПОСОБ СОЗДАНИЯ ПОКРЫТИЯ | 2011 |
|
RU2538434C2 |
ПРИМЕНЕНИЕ ГИДРОКСИДА КОБАЛЬТА В КАЧЕСТВЕ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ | 2011 |
|
RU2537641C2 |
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ РЕЖУЩЕГО ИНСТРУМЕНТА ИЗ ТВЕРДЫХ СПЛАВОВ НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА С КОБАЛЬТОВОЙ СВЯЗКОЙ | 2014 |
|
RU2564645C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНЫХ УСЛОВИЙ ШЛИФОВАНИЯ | 2003 |
|
RU2323813C2 |
СПОСОБ СТАБИЛИЗАЦИИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ИЗДЕЛИЙ ИЗ ТВЕРДЫХ СПЛАВОВ | 2011 |
|
RU2525873C2 |
Изобретение относится к области горного дела и металлургии, преимущественно к шарам из твердосплавного кобальтсодержащего материала для шаровых и вибрационных мельниц. Шар снабжен износостойким приповерхностным слоем, содержащим соединения кобальта с водородом и кислородом. В качестве указанных соединений приповерхностный слой содержит гидроксид кобальта Со(ОН)2 и гетерогениты. Предлагаемое изобретение направлено на существенное увеличение износостойкости шара. 3 пр.
Шар из кобальтсодержащего твердого сплава для шаровых и вибрационных мельниц, отличающийся тем, что он снабжен износостойким приповерхностным слоем, содержащим соединения кобальта с водородом и кислородом.
Приспособление для испытания тормозных вагонных кранов и тому подобной арматуры | 1951 |
|
SU94169A1 |
Способ изготовления точильных и полировальных камней | 1928 |
|
SU9094A1 |
Приспособление для выправления кольцевых секций металлических труб при их монтаже | 1948 |
|
SU79676A1 |
Плот из уплотненных групп пучков | 1947 |
|
SU78992A1 |
Авторы
Даты
2015-01-27—Публикация
2013-06-20—Подача