Изобретение относится к области микроэлектроники, а именно к радиационно-стойким библиотекам элементов на комплементарных металл-окисел-полупроводник (КМОП) транзисторах, и может быть использовано при проектировании радиационно-стойких КМОП СБИС (сверхбольших интегральных схем) на объемном кремнии, в частности СБИС типа «система-на-кристалле» для авионики, аэрокосмических и других применений.
Известны [патент США N 3440503, патент США N 4318750] конструктивно-топологические решения КМОП элементов библиотеки (Фиг.1), занимающих минимальную площадь на кристалле и использующих локальные p+ области 3 в подложке p-типа и n+ области 2 в «кармане» 1 n-типа соответственно для контактов к шине нулевого потенциала (земли) и питания.
На Фиг.1 также показаны области 4 и 5 затворов n- и p-канальных транзисторов соответственно, сток-истоковые области 6 и 7 n- и p-канальных транзисторов соответственно, 8 - топологическая граница элемента, по которой стыкуются соседние элементы.
Недостатком таких решений является низкая стойкость ко всем радиационным факторам. Это связано со значительными утечками в области n-канальных транзисторов: между n+ областями стоков/истоков соседних транзисторов и между n- карманом и n+ областями истоков/стоков этих транзисторов. Кроме того, такая конструкция элементов обладает низкой стойкостью к эффекту «защелкивания» и сбоям в элементах при воздействия тяжелых частиц.
Наиболее близкими к заявленному конструктивно-топологическому решению КМОП элементов библиотеки являются элементы, выполненные согласно патенту США N 5406513 (Фиг.2 и Фиг.3, на которых изображены два разных по сложности элемента библиотеки, реализующие данный конструктивно-топологической принцип при одинаковых проектных нормах), использующие охранные кольца p+типа (область 3) и n+типа (область 2) вокруг транзисторов n- и p-типов и подключенные соответственно к шине нулевого потенциала (земли) и питания. Данные элементы выбраны в качестве прототипов заявленного изобретения.
На Фиг.2 и 3 также показаны области 4 и 5 затворов n- и p-канальных транзисторов соответственно, сток-истоковые области 6 и 7 n- и p-канальных транзисторов соответственно, 8 - топологическая граница элемента, по которой стыкуются соседние элементы.
Конструктивно-топологическое решение КМОП элементов библиотеки прототипа обладает высокой стойкостью к радиационным факторам. Однако элементы такой библиотеки занимают большую площадь на кристалле, что приводит к существенному снижению степени интеграции СБИС, а также понижению быстродействия.
Задачей заявленного изобретения является создание радиационно-стойкой библиотеки элементов на комплементарных металл-окисел-полупроводник транзисторах с меньшей площадью элементов на кристалле и повышенным быстродействием.
Поставленная задача решена путем создания радиационно-стойкой библиотеки элементов на комплементарных металл-окисел-полупроводник транзисторах, содержащей подложку p-типа и «карман» n-типа, активные области МОП транзисторов n- и p-типов, контакты p+ и n+ к шине нулевого потенциала и питания соответственно, отличающейся тем, что дополнительно содержит расширенную n+ охрану, расположенную вдоль внешней границы «кармана» и заполняющую собой всю свободную площадь «кармана», а также кольцевую p+ охрану, расположенную вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет собой всю свободную площадь подложки.
Краткое описание чертежей
Фиг.1. Схема КМОП элементов библиотеки, выполненная согласно патенту США N 3440503 и патенту США N 4318750.
Фиг.2. Схема КМОП элементов библиотеки, выполненная согласно патенту США N 5406513.
Фиг.3. Схема КМОП элементов библиотеки, выполненная согласно патенту США N 5406513.
Фиг.4. Схема варианта КМОП элементов библиотеки, выполненная согласно изобретению.
Фиг.5. Схема варианта КМОП элементов библиотеки, выполненная согласно изобретению.
В заявленном конструктивно-топологическом решении элементов КМОП библиотеки (Фиг.4, 5) отсутствует кольцевая n+ охрана во внутренней области элемента вдоль границы карман - подложка и используется расширенная n+ охрана 2 вдоль внешней границы «кармана» 1, которая заполняет всю свободную площадь «кармана» 1, а также присутствует кольцевая p+ охрана (область 3) вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет всю свободную площадь подложки.
На Фиг.4 и 5 также показаны области 4 и 5 затворов n- и p-канальных транзисторов соответственно, сток-истоковые области 6 и 7 n- и p-канальных транзисторов соответственно, 8 - топологическая граница элемента, по которой стыкуются соседние элементы. Все области p+ охраны 3 подключаются к шине нулевого потенциала, а области n+охраны - к шине питания, благодаря чему обеспечивается привязка подложки и «кармана» 1.
Сравнение различных элементов, выполненных по одинаковым правилам проектирования, показало, что площадь на кристалле у элементов с предлагаемыми конструктивно-топологическими решениями приблизительно в среднем на 26% меньше, чем у прототипа, при несколько большем быстродействии. По сравнению с нестойкими элементами площадь больше всего лишь на 10%. Испытания микросхем, разработанных с помощью предложенной библиотеки элементов, показали высокую дозовую стойкость и отсутствие тиристорного эффекта при воздействии тяжелых заряженных частиц во всем доступном диапазоне линейных потерь энергии.
Хотя описанный выше вариант выполнения изобретения был изложен с целью иллюстрации настоящего изобретения, специалистам ясно, что возможны разные модификации, добавления и замены, не выходящие из объема и смысла настоящего изобретения, раскрытого в прилагаемой формуле изобретения.
Изобретение относится к области микроэлектроники. Техническим результатом изобретения является создание радиационно-стойкой библиотеки элементов на комплементарных металл-окисел-полупроводник транзисторах с меньшей площадью элементов на кристалле и повышенным быстродействием. Библиотека элементов на комплементарных металл-окисел-полупроводник транзисторах, содержащая подложку p-типа и «карман» n-типа, активные области МОП транзисторов n- и p-типов, контакты p+ и n+ к шине нулевого потенциала и питания, дополнительно содержит расширенную n+ охрану, расположенную вдоль внешней границы «кармана» и заполняющую собой всю свободную площадь «кармана», а также кольцевую p+ охрану, расположенную вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет собой всю свободную площадь подложки. 5 ил.
Радиационно-стойкая библиотека элементов на комплементарных металл-окисел-полупроводник транзисторах, содержащая подложку p-типа и «карман» n-типа, активные области МОП транзисторов n- и p-типов, контакты p+ и n+ к шине нулевого потенциала и питания соответственно, отличающаяся тем, что дополнительно содержит расширенную n+ охрану, расположенную вдоль внешней границы «кармана» и заполняющую собой всю свободную площадь «кармана», а также кольцевую p+ охрану, расположенную вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет собой всю свободную площадь подложки.
US 5406513 A, 11.04.1995 | |||
US 7804138 B2, 28.09.2010 | |||
US 7733144 B2, 08.06.2010 | |||
US 6583470 B1, 24.06.2003 | |||
US 4689653 A, 25.08.1987 | |||
US 4402002 A, 30.08.1983 | |||
US 4318750 A, 09.03.1982 | |||
СПОСОБ УВЕЛИЧЕНИЯ РАДИАЦИОННОЙ СТОЙКОСТИ ЭЛЕМЕНТОВ КМОП-СХЕМ НА КНИ ПОДЛОЖКЕ | 2003 |
|
RU2320049C2 |
Авторы
Даты
2015-01-27—Публикация
2013-12-24—Подача