ОПТИЧЕСКИЙ БЛОК ДЛЯ ЛАЗЕРНОГО ЗОНДИРОВАНИЯ ОБЛАЧНОЙ АТМОСФЕРЫ Российский патент 2015 года по МПК G01S17/95 G02B23/04 

Описание патента на изобретение RU2540137C1

Предлагаемое изобретение относится к технике измерения характеристик облачности и предназначено, преимущественно, для использования на аэродроме с целью метеообеспечения взлета/посадки воздушных судов информацией о высоте нижней границы облаков.

В настоящее время средства для измерения характеристик облачности на аэродроме используют лазерную технологию формирования и обработки эхо-сигналов от облачной атмосферы, они содержат оптический блок и блок обработки эхо-сигналов. Различные схемы построения оптического блока рассмотрены в [1, 2].

В настоящее время практическая реализация этих схем развивается в двух вариантах.

В первом варианте [2, рис.1] в качестве излучающей оптики, в фокусе которой установлен полупроводниковый импульсный лазер, используется основное и вторичное зеркало, а в качестве приемной оптики, в фокусе которой установлен фотоприемник, используется линзовый объектив, диаметр которого меньше диаметра основного зеркала излучающей оптики и приблизительно равен диаметру вторичного зеркала.

Линзовый объектив установлен перед зеркальным объективом соосно с ним.

Во втором варианте [2, рис.2] используется обратная схема, в которой излучающий лазер и фотоприемник меняются местами.

Недостатком обоих вариантов является наличие «мертвой зоны», в которой эхо-сигналы от нижней границы облаков на высотах ниже нескольких десятков метров фотоприемником не воспроизводятся.

Механизм подавления эхо-сигналов в «мертвой зоне» поясняется [2, рис.3].

При уменьшении расстояния до нижней границы облаков изображение светового пятна от облученной лазером поверхности облака формируется не параллельными, а наклонными лучами. При этом максимум оптического сигнала перемещается за фокальную плоскость.

В фокальной плоскости, где установлен фотоприемник, размер светового пятна существенно увеличивается и на приемную поверхность фотоприемника через полевую диафрагму проходит незначительная доля эхо-сигнала.

Чем меньше расстояние до нижней границы облака, тем сильнее подавляется эхо-сигнал.

Это также приводит к формированию ложного пика эхо-сигнала на верхней границе «мертвой зоны» при наличии помутнений атмосферы из-за дымки и осадков.

Достоинством второго варианта оптической схемы [2, рис.2] является более (на порядок величины) высокое отношение сигнал/шум, что повышает дальность обнаружения облачных слоев. Указанная оптическая схема принята в качестве прототипа.

Основной задачей, на решение которой направлено изобретение, является компенсация уменьшения эхо-сигнала в ближней зоне и расширение диапазона измерения в сторону низких значений высоты нижней границы облаков.

Для решения поставленной задачи предложен оптический блок для лазерного зондирования облачной атмосферы, который, как и прототип, содержит линзовый объектив, полупроводниковый импульсный лазер, установленный в фокусе линзового объектива, зеркальный объектив, первый фотоприемник, установленный в фокусе зеркального объектива, содержащего главное и вторичное зеркала, в главном зеркале выполнено центральное отверстие для прохождения отраженных вторичным зеркалом лучей за заднюю поверхность главного зеркала, защитное стекло и блок обработки фотоэлектрических сигналов на два входа и один выход, при этом один вход сопряжен с полупроводниковым импульсным лазером, второй вход связан с первым фотоприемпиком, а линзовый объектив с лазером установлен перед зеркальным объективом соосно с ним.

В отличие от прототипа в оптический блок дополнительно введены второй фотоприемник, полупрозрачное плоское зеркало и сумматор фотоэлектрических сигналов на два входа и один выход, полупрозрачное плоское зеркало размещено в центральном отверстии главного зеркала, второй фотоприемник установлен соосно с первым за дополнительной фокальной поверхностью зеркального объектива, образованной полупрозрачным плоским зеркалом, а выход сумматора фотоэлектрических сигналов подключен к второму входу блока обработки фотоэлектрических сигналов, при этом первый и второй входы сумматора фотоэлектрических сигналов подключены к выходам первого и второго фотоприемников соответственно.

Сущность изобретения заключается в том, что в ближней зоне по мере уменьшения расстояния до нижней границы облаков сигнал на первом фотоприемнике уменьшается, а на втором фотоприемнике увеличивается, поэтому сумма сигналов от обоих фотоприемников остается приблизительно постоянной.

При этом оказывается возможным измерять высоту нижней границы облаков вплоть до нулевых ее значений.

Кроме того, равномерное распределение чувствительности приемного канала фотоприемников в ближней зоне препятствует возникновению ложного пика сигнала при наличии осадков и дымки.

Сущность изобретения поясняется чертежом, где на фиг.1 представлена общая схема оптического блока для лазерного зондирования облачной атмосферы.

Оптический блок для лазерного зондирования облачной атмосферы содержит линзовый объектив 1, полупроводниковый импульсный лазер 2, установленный в фокусе линзового объектива 1, зеркальный объектив, содержащий главное 3 и вторичное 4 зеркала.

Первый фотоприемник 5 установлен в фокусе зеркального объектива.

В главном зеркале 3 выполнено центральное отверстие для прохождения отраженных вторичным зеркалом лучей за заднюю поверхность главного зеркала 3, защитное стекло 6 и блок обработки фотоэлектрических сигналов 7, при этом один вход сопряжен с полупроводниковым импульсным лазером 2, второй вход связан с первым фотоприемником 5.

Линзовый объектив 1 с полупроводниковым импульсным лазером 2 установлен перед зеркальным объективом соосно с ним.

В оптический блок дополнительно введены второй фотоприемник 8, полупрозрачное плоское зеркало 9 и сумматор фотоэлектрических сигналов на два входа и один выход 10.

Полупрозрачное плоское зеркало 9 размещено в центральном отверстии главного зеркала 3, второй фотоприемник 8 установлен соосно с первым фотоприемником 5 за дополнительной фокальной поверхностью зеркального объектива, образованной полупрозрачным плоским зеркалом 9, а выход сумматора фотоэлектрических сигналов 10 подключен ко второму входу блока обработки фотоэлектрических сигналов 7, при этом входы сумматора фотоэлектрических сигналов подключены к выходам первого 5 и второго 8 фотоприемников соответственно.

Оптический блок для лазерного зондирования облачной атмосферы работает следующим образом.

Когда объект измерения (облако) находится на значительном удалении от оптического блока эхо-сигнал формирует изображение светового пятна в фокальной плоскости зеркального объектива параллельными лучами. Поэтому изображение светового пятна в фокальной плоскости имеет минимальные размеры и сигнал полностью проходит через полевую диафрагму (на чертеже не показана) первого фотоприемника 5. Поскольку второй фотоприемник 8 расположен за (дополнительной) фокальной плоскостью главного зеркала 3 зеркального объектива, размер светового пятна превышает размер отверстия полевой диафрагмы.

Когда объект измерения находится на близком расстоянии от оптического блока на входной зрачок зеркального объектива поступают наклонные лучи (на чертеже отмечены пунктиром). Поэтому изображение светового пятна имеет минимальные размеры за дополнительной фокальной плоскостью зеркального объектива, где расположен второй фотоприемник 8. При этом сигнал полностью проходит через полевую диафрагму второго фотоприемника 8. На первый фотоприемник 5 сигнал поступает частично, поскольку в фокальной плоскости зеркального объектива, где расположен первый фотоприемник 5, размер светового пятна превышает размер отверстия полевой диафрагмы.

В блоке обработки фотоэлектрических сигналов 7 от обоих фотоприемников 5 и 8 суммируются.

Полупроводниковый импульсный лазер 2, установленный в фокусе линзового объектива 1, формирует слабо расходящийся пучок света. Отраженный эхо-сигнал принимается первым 5 и вторым 8 фотоприемниками.

В блоке обработки фотоэлектрических сигналов 7 измеряется время запаздывания эхо-сигнала относительно излученного полупроводниковым импульсным лазером 2 импульса. Эхо-сигнал из дальней зоны полностью воспринимается первым фотоприемником 5. В ближней зоне эхо-сигнал на первом фотоприемнике 5 уменьшается с уменьшением расстояния до облака, а на втором фотоприемнике 8 увеличивается. Суммарный сигнал в ближней зоне остается приблизительно постоянным. Это устраняет «мертвую зону» и позволяет измерить высоту нижней границы облаков вплоть до нулевых ее значений.

Таким образом, использование предлагаемого оптического блока позволило компенсировать уменьшение эхо-сигнала в ближней зоне и расширение диапазона измерения в сторону низких значений высоты нижней границы облаков.

Сопутствующим техническим результатом является устранение ложного пика эхо-сигнала в ближней к приемоизлучателю зоне.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Российская Федерация, свидетельство на полезную модель № 7210, МПК G01S 1/66, 1998 г.

2. В.Е. Зуев. Лазер-метеоролог, «Гидрометеоиздат», Ленинград, 1974, с.37, рис.3. - прототип.

Похожие патенты RU2540137C1

название год авторы номер документа
Устройство для бесконтактного измерения линейных размеров деталей 1982
  • Алексеенко Владимир Васильевич
  • Давыдов Борис Сергеевич
  • Енгалычев Равиль Измайлович
  • Бурганов Николай Александрович
  • Сарамбаев Вадим Георгиевич
SU1095035A2
ЛАЗЕРНЫЙ ДАЛЬНОМЕР (ВАРИАНТЫ) 2007
  • Санников Петр Алексеевич
  • Бурский Вячеслав Александрович
RU2340871C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПОПЕРЕЧНОГО РАЗМЕРА ДЕТАЛИ 1990
  • Евсеенко Н.И.
  • Райхерт А.А.
  • Зубиков П.В.
RU2047091C1
МНОГОФУНКЦИОНАЛЬНАЯ ОПТИКО-ЛОКАЦИОННАЯ СИСТЕМА 2005
  • Прилипко Александр Яковлевич
  • Павлов Николай Ильич
  • Левченко Виктор Николаевич
RU2292566C1
Устройство для бесконтактного измерения линейных размеров деталей 1983
  • Алексеенко Владимир Васильевич
  • Давыдов Борис Сергеевич
  • Енгалычев Равиль Измайлович
  • Бурганов Николай Александрович
  • Сарамбаев Вадим Георгиевич
SU1121583A2
ОПТИЧЕСКИЙ ПРИЦЕЛ (ВАРИАНТЫ) 2006
  • Санников Пётр Алексеевич
  • Бурский Вячеслав Александрович
RU2334934C2
СПОСОБ АВТОФОКУСИРОВКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ НА ИНФОРМАЦИОННОМ СЛОЕ НОСИТЕЛЯ ИНФОРМАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Щетников А.А.
  • Ашкиназий Я.М.
  • Федоров Е.Н.
  • Чеглаков А.В.
RU2162253C1
Лазерный нивелир 1989
  • Здобников Александр Евгеньевич
  • Илюхин Валерий Аркадьевич
  • Герасимов Игорь Михайлович
  • Крылов Анатолий Николаевич
  • Осипов Виктор Константинович
  • Савостин Петр Иванович
SU1779925A1
Устройство для задания опорной световой плоскости 1987
  • Здобников Александр Евгеньевич
  • Илюхин Валерий Аркадьевич
  • Арефьев Александр Александрович
  • Тарасов Виктор Васильевич
  • Илюхин Александр Николаевич
SU1508094A1
МИКРОСКОП ПРОХОДЯЩЕГО И ОТРАЖЕННОГО СВЕТА 2009
  • Натаровский Сергей Николаевич
  • Скобелева Наталия Богдановна
  • Лобачева Елена Викторовна
  • Сокольский Михаил Наумович
RU2419114C2

Реферат патента 2015 года ОПТИЧЕСКИЙ БЛОК ДЛЯ ЛАЗЕРНОГО ЗОНДИРОВАНИЯ ОБЛАЧНОЙ АТМОСФЕРЫ

Оптический блок может быть использован для измерения характеристик облачности, преимущественно, на аэродроме с целью метеообеспечения взлета/посадки информацией о высоте нижней границы облаков. Оптический блок содержит линзовый объектив и полупроводниковый импульсный лазер, установленный в его фокусе, установленные перед зеркальным объективом соосно с ним, первый фотоприемник, установленный в фокусе зеркального объектива, содержащего главное и вторичное зеркала, полупрозрачное плоское зеркало размещено в центральном отверстии главного зеркала. Второй фотоприемник установлен соосно с первым за дополнительной фокальной поверхностью зеркального объектива, образованной полупрозрачным плоским зеркалом. Блок содержит блок обработки фотоэлектрических сигналов на два входа и один выход, один вход которого сопряжен с полупроводниковым импульсным лазером, второй - с первым фотоприемником, и сумматор фотоэлектрических сигналов на два входа и один выход, выход которого подключен ко второму входу блока обработки фотоэлектрических сигналов, а первый и второй входы - к выходам первого и второго фотоприемников соответственно. Технический результат - компенсация уменьшения эхо-сигнала в ближней зоне и расширение диапазона измерения в сторону низких значений высоты нижней границы облаков. 1 ил.

Формула изобретения RU 2 540 137 C1

Оптический блок для лазерного зондирования облачной атмосферы, содержащий линзовый объектив, полупроводниковый импульсный лазер, установленный в фокусе линзового объектива, зеркальный объектив, первый фотоприемник, установленный в фокусе зеркального объектива, содержащего главное и вторичное зеркала, в главном зеркале выполнено центральное отверстие для прохождения отраженных вторичным зеркалом лучей за заднюю поверхность главного зеркала, защитное стекло и блок обработки фотоэлектрических сигналов на два входа и один выход, при этом один вход сопряжен с полупроводниковым импульсным лазером, второй вход связан с первым фотоприемником, а линзовый объектив с лазером установлен перед зеркальным объективом соосно с ним, отличающийся тем, что в оптический блок дополнительно введены второй фотоприемник, полупрозрачное плоское зеркало и сумматор фотоэлектрических сигналов на два входа и один выход, полупрозрачное плоское зеркало размещено в центральном отверстии главного зеркала, второй фотоприемник установлен соосно с первым за дополнительной фокальной поверхностью зеркального объектива, образованной полупрозрачным плоским зеркалом, а выход сумматора фотоэлектрических сигналов подключен ко второму входу блока обработки фотоэлектрических сигналов, при этом первый и второй входы сумматора фотоэлектрических сигналов подключены к выходам первого и второго фотоприемников соответственно.

Документы, цитированные в отчете о поиске Патент 2015 года RU2540137C1

Зуев В.Е
"Лазер-метеоролог, "Гидрометеоиздат", Л-д, 1974, с.37, рис.3
US 7894044 B1, 22.02.2011,
КЕРОСИНОВАЯ ПЕЧЬ-ПЛИТА 1925
  • Петер П.
SU7210A1
СПОСОБ ДОСТАВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ОБЪЕКТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Барков Валерий Павлович
  • Барщевский Дмитрий Владимирович
  • Дикий Евгений Иванович
  • Мызников Александр Николаевич
  • Романенко Ольга Николаевна
  • Чередников Олег Руфович
RU2270523C1
Прибор для автоматической регистрации площади вспашки 1936
  • Пальчиков К.Ф.
SU58210A1

RU 2 540 137 C1

Авторы

Волков Олег Алексеевич

Круглов Роберт Алексеевич

Денисенко Сергей Александрович

Проценко Вадим Андреевич

Даты

2015-02-10Публикация

2013-10-15Подача