СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОУГЛЕРОДИСТЫХ ЗОЛОТОНОСНЫХ ПОРОД Российский патент 2015 года по МПК C22B11/00 C22B3/06 

Описание патента на изобретение RU2540236C2

Изобретение относится к металлургии благородных металлов, в частности к способам переработки упорных углеродсодержащих золотоносных пород.

Переработка углеродсодержащих или углистых руд для извлечения золота представляет достаточно сложную задачу. Это обусловлено тем, что такого рода сырье содержит природные сорбенты благородных металлов, что препятствует применению цианистого процесса. Переработку руд с сильно выраженной сорбционной активностью рекомендовано производить путем обработки их газообразным хлором (или другими хлорсодержащими окислителями углерода) и далее - цианированием в режиме сорбционного выщелачивания (CIL). Такая технология, в частности, реализована на американских фабриках Джеррит Кэньон и Кэрлин (М.А. Меретуков, А.М. Орлов. Металлургия благородных металлов (зарубежный опыт). М.: Металлургия, 1991. 416 с).

Наиболее радикальным способом подготовки высокоуглеродистых руд (и концентратов) является окислительный обжиг с полным выгоранием углерода.

Известен способ извлечения золота из углистых руд, обладающих высокой сорбционной активностью, включающий их гравитационно-флотационное обогащение, окислительный обжиг флотоконцентрата и цианирование огарка (В.В. Лодейщиков. Техника и технология извлечения золота из руд за рубежом. М.: Металлургия, 1973, с. 219).

В данном способе окислительный обжиг концентрата, обеспечивая пассивацию углистых веществ и окисление сульфидов перед цианированием огарка, предотвращает сорбцию золота природными сорбентами и тем самым способствует снижению потерь золота с хвостами цианирования.

К недостаткам известного способа относятся высокие капитальные и энергетические затраты на пирометаллургический передел, безвозвратные потери одного из компонентов сырья, а именно углерода, загрязнение окружающей среды оксидами углерода и использование для извлечения золота высокотоксичных цианидных растворов.

Наиболее близким по технической сущности является способ переработки высокоуглеродистых (графитоносных) золотосодержащих пород, принятый за прототип (А.И. Ханчук, В.П. Молчанов, М.А., Медков, Г.Ф. Крысенко, Д.Г. Эпов, С.А. Сарин. Пути переработки графитоносных пород Приморья // Химическая технология 2010, т. 10. №1. с. 33-36), предусматривающий флотацию графита с последующим выщелачиванием золота кислыми растворами тиомочевины. Выщелачивание осуществляют раствором, содержащим 100 г/л тиомочевины, 10 г/л серной кислоты и 20 г/л персульфата аммония, при комнатной температуре в течение 5 часов при объемном отношении твердого к жидкому, равном 1 к 3.

К недостаткам способа относится высокий удельный расход реагентов, обусловленный, с одной стороны, относительно низким содержанием золота в хвостах флотации, а с другой стороны, наличием железа, на растворение которого также расходуются перечисленные выше реагенты.

Задачей заявляемого изобретения является устранение указанных недостатков, а именно снижение удельного расхода реагентов при переработке высокоуглеродистых золотоносных пород.

Поставленная задача решается предлагаемым способом переработки высокоуглеродистых золотоносных пород, включающим флотацию графита с получением хвостов флотации, извлечение золота выщелачиванием кислым раствором тиомочевины, содержащим 100 г/л тиомочевины, 10 г/л серной кислоты и 20 г/л персульфата, в котором хвосты флотации подвергают магнитной сепарации в магнитном поле 800-1000 эрстед с получением магнитной и немагнитной фракции с содержанием золота 5,2-5,6 г/т, при этом выщелачиванию упомянутым кислым раствором тиомочевины подвергают немагнитную фракцию.

Заявляемый способ осуществляют следующим образом.

Графитоносную золотосодержащую породу измельчают до крупности 0,044 мм и затем флотируют в одну стадию в течение 10-30 мин. В качестве вспенивателя используют сосновое масло, а в качестве собирателя - длинноцепочечный амин, например октиламин. Основная масса графита (около 90%) и часть кремния при этих условиях флотации концентрируются в пенном продукте.

Содержание золота в образцах на различных стадиях процесса определяли на установке НАА (нейтронно-активационного анализа) с калифорниевым источником нейтронов. Наведенную активность золотосодержащих образцов измеряли гамма-спектрометром с Ge-Li детектором по гамма-линии Еγ=411,8 кэВ радионуклида 198Au.

По данным нейтронно-активационного анализа пенный продукт не содержит золота и может быть использован в качестве товарного продукта, которым является графит, соответствующий ГОСТу 8295-73 (графит для изготовления смазок, покрытий из электропроводящей резины марки П).

В свою очередь, все золото концентрируется в камерном продукте флотации. Затем камерный продукт подвергают магнитной сепарации в магнитном поле 800-1000 эрстед, вследствие чего золото концентрируется в немагнитной фракции. Для извлечения золота немагнитную фракцию выщелачивают раствором, содержащим 100 г/л тиомочевины, 10 г/л серной кислоты и 20 г/л персульфата аммония. Процесс выщелачивания ведут при комнатной температуре в течение 5 часов при объемном отношении твердого к жидкому, равном 1 к 3. Затем кек промывают в два этапа: сначала исходным раствором тиомочевины, а затем водой при объемном отношении твердого к жидкому, равном 1 к 1. Извлечение золота в раствор выщелачивания составляет около 90%. Из раствора золото извлекают известными методами, например цементацией или электролизом.

Таким образом, техническим результатом предлагаемого изобретения в сравнении с известным способом является существенное снижение удельного расхода реагентов при переработке высокоуглеродистых золотоносных пород и, соответственно, повышение эффективности процесса в целом.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1

100 г высушенных хвостов флотации высокоуглеродистых золотоносных пород с содержанием золота 2,4 г/т подвергают магнитной сепарации в поле 800 эрстед, в результате которой получают 46 г немагнитной фракции с содержанием золота 5,2 г/т. Немагнитную фракцию выщелачивают раствором, содержащим 100 г/л тиомочевины, 10 г/л серной кислоты и 20 г/л персульфата аммония при комнатной температуре в течение 5 часов при объемном отношении твердого к жидкому, равном 1 к 3. Кек промывают в два этапа: сначала исходным раствором тиомочевины, а затем водой при объемном отношении твердого к жидкому, равном 1 к 1. Расход реагентов на 1 г золота составляет: тиомочевины - 7,7 г, серной кислоты - 0,77 г, персульфата аммония -1,54 г.

Пример 2

100 г высушенных хвостов флотации высокоуглеродистых золотоносных пород с содержанием золота 2,4 г/т подвергают магнитной сепарации в поле около 1000 эрстед, в результате которой получают 43 г немагнитной фракции с содержанием золота 5,6 г/т. Немагнитную фракцию выщелачивают раствором, содержащим 100 г/л тиомочевины, 10 г/л серной кислоты и 20 г/л персульфата аммония при комнатной температуре в течение 5 часов при объемном отношении твердого к жидкому, равном 1 к 3. Кек промывают в два этапа: сначала исходным раствором тиомочевины, а затем водой при объемном отношении твердого к жидкому, равном 1 к 1. Расход реагентов на 1 г золота составляет: тиомочевины - 7,3 г, серной кислоты - 0,72 г, персульфата аммония -1,50 г.

Пример 3 (по прототипу)

Графитоносную золотосодержащую породу, содержащую 30% графита, измельчают до крупности - 0,044 мм и затем флотируют в одну стадию в течение 10-30 мин. В качестве вспенивателя используют сосновое масло, а в качестве собирателя - длинноцепочечный амин, например октиламин. 100 г хвостов флотации высокоуглеродистых золотоносных пород с содержанием золота 2,4 г/т выщелачивают раствором, содержащим 100 г/л тиомочевины, 10 г/л серной кислоты и 20 г/л персульфата аммония при комнатной температуре в течение 5 часов при объемном отношении твердого к жидкому, равном 1 к 3. Далее кек промывают дважды: первый раз исходным раствором тиомочевины, второй раз водой при объемном отношении, равном 1 к 1. Расход реагентов на 1 г золота на стадии выщелачивания составляет: тиомочевины - 16,7 г, серной кислоты - 1,67 г, персульфата аммония - 3,3 г.

Таким образом, из результатов примеров следует, что расход реагентов на 1 г золота на стадии выщелачивания по примерам 1 и 2 составляет в 2,2-2,3 раз меньше, чем в сравнении с примером 3 по способу-прототипу.

Похожие патенты RU2540236C2

название год авторы номер документа
Способ выщелачивания золота из хвостов гравитационного обогащения упорных золотосодержащих руд 2022
  • Литвинова Наталья Михайловна
  • Конарева Татьяна Геннадьевна
  • Лаврик Наталья Анатольевна
  • Богомяков Роман Владимирович
  • Степанова Валентина Федоровна
RU2793892C1
СПОСОБ ИЗВЛЕЧЕНИЯ ТОНКОДИСПЕРСНОГО ЗОЛОТА ИЗ ГЛИНИСТЫХ ОТЛОЖЕНИЙ 2012
  • Шокина Любовь Никифоровна
RU2525193C1
СПОСОБ ДЕЗИНТЕГРАЦИИ МИНЕРАЛЬНОЙ СОСТАВЛЯЮЩЕЙ ГИДРОСМЕСИ В УСЛОВИЯХ РЕЗОНАНСНЫХ АКУСТИЧЕСКИХ ЯВЛЕНИЙ В ГИДРОПОТОКЕ И ГЕОТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Хрунина Наталья Петровна
RU2506128C1
СПОСОБ ИЗВЛЕЧЕНИЯ ТИТАНА ИЗ ШЛАКА, ПОЛУЧЕННОГО ПРИ ВЫПЛАВКЕ ЧУГУНА И СТАЛИ ИЗ ТИТАНОМАГНЕТИТОВОГО КОНЦЕНТРАТА 2013
  • Борисков Федор Федорович
  • Борисков Дмитрий Федорович
RU2578876C2
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ МИНЕРАЛЬНОГО СЫРЬЯ, СОДЕРЖАЩЕГО МЕЛКИЕ ФРАКЦИИ ЗОЛОТА 2011
  • Шокина Любовь Никифоровна
RU2467083C1
Способ извлечения ценного компонента методом комбинирования кучного и скважинного выщелачивания 2022
  • Лаврик Александр Викторович
RU2804763C1
СПОСОБ ОТРАБОТКИ РОССЫПЕЙ, ПРЕИМУЩЕСТВЕННО ЗОЛОТОСОДЕРЖАЩИХ 2008
  • Неронский Геннадий Иванович
  • Бородавкин Сергей Илларионович
RU2382678C1
СПОСОБ ОБРАБОТКИ ПРОБ ЗОЛОТОНОСНЫХ РОССЫПЕЙ 2006
  • Неронский Геннадий Иванович
  • Бородавкин Сергей Илларионович
RU2329103C1
СПОСОБ ИЗВЛЕЧЕНИЯ АЛЮМИНИЯ И ЖЕЛЕЗА ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ 2010
  • Александрова Татьяна Николаевна
  • Прохоров Константин Валерьевич
RU2436855C1
Способ комбинированной разработки россыпных месторождений золота 2018
  • Секисов Артур Геннадиевич
  • Рассказова Анна Вадимовна
  • Богомяков Роман Владимирович
RU2687715C1

Реферат патента 2015 года СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОУГЛЕРОДИСТЫХ ЗОЛОТОНОСНЫХ ПОРОД

Изобретение относится к металлургии благородных металлов, в частности к способу переработки упорных высокоуглеродистых золотоносных пород. Способ переработки включает флотацию графита и извлечение золота выщелачиванием кислыми растворами тиомочевины. При этом перед выщелачиванием хвосты флотации подвергают сухой магнитной сепарации. Сухую магнитную сепарацию осуществляют в магнитном поле 800-1000 эрстед с концентрированием золота в немагнитной фракции c содержанием 5,2-5,6 г/т золота. Выщелачиванию упомянутым кислым раствором тиомочевины подвергают немагнитную фракцию. Техническим результатом является снижение удельного расхода реагентов при переработке высокоуглеродистых золотоносных пород и, соответственно, повышение эффективности процесса в целом. 3 пр.

Формула изобретения RU 2 540 236 C2

Способ переработки высокоуглеродистых золотоносных пород, включающий флотацию графита с получением хвостов флотации, извлечение золота выщелачиванием кислым раствором, содержащим 100 г/л тиомочевины, 10 г/л серной кислоты и 20 г/л персульфата, отличающийся тем, что хвосты флотации подвергают магнитной сепарации в магнитном поле 800-1000 эрстед с концентрированием золота в немагнитной фракции c содержанием 5,2-5,6 г/т золота, при этом выщелачиванию упомянутым кислым раствором тиомочевины подвергают немагнитную фракцию.

Документы, цитированные в отчете о поиске Патент 2015 года RU2540236C2

ХАНЧУК А.И
и др
Пути переработки графитоносных пород Приморья, Химическая технология, 2009, т.10, c.33-36
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩИХ СУЛЬФИДНЫХ КОНЦЕНТРАТОВ (ВАРИАНТЫ) 2010
  • Дементьев Владимир Евгеньевич
  • Панченко Галина Михайловна
  • Муллов Владимир Михайлович
  • Хмельницкая Ольга Давыдовна
RU2434953C1
RU 2011135569 А, 27.02.2013
RU 94026267 А1, 10.04.1996
RU 2006106635 А, 27.07.2006
Вискозиметр 1944
  • Баранцев А.А.
SU68446A1
ШТОК ГИДРОЦИЛИНДРА 2000
  • Кобзов Д.Ю.
  • Тарасов В.А.
RU2181452C2
BR 9201457 А1, 19.10.1993
US 4561947 А, 31.12.1985

RU 2 540 236 C2

Авторы

Ханчук Александр Иванович

Медков Михаил Азарьевич

Молчанов Владимир Петрович

Эпов Дантий Григорьевич

Даты

2015-02-10Публикация

2013-05-07Подача