Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении золошлаковых отходов, сырья техногенного характера, содержащего железо и алюминий.
Известен способ получения сульфата алюминия, включающий формирование пульпы из исходного сырья в виде шлака алюминиевого производства, содержащего оксид алюминия, посредством перемешивания исходного сырья с водой, взаимодействие компонентов шлака с серной кислотой и водой с образованием водного раствора сульфата алюминия [1].
Недостатком данного способа является использование для экстракции высококонцентрированного раствора серной кислоты (70-75%).
Известен способ получения сульфата алюминия, включающий предварительную отмывку шлака, содержащего оксид алюминия, от солей, затем обработку его серной кислотой, отделение фильтрацией полученного раствора от песка [2].
Данный способ не обеспечивает эффективную подготовку алюминийсодержащего сырья. Недостатком также является ограниченная сырьевая база применения метода при использовании отвальных алюмосодержащих шлаков, в то время как ЗШО являются широко распространенным сырьем.
Наиболее близким к предлагаемому способу является способ получения коагулянта путем растворения окислов железа и алюминия из глины или золы серной кислотой с добавлением поваренной соли. Процесс проводится с подогревом и пропусканием постоянного или переменного электрического тока [3].
Недостатком этого способа является использование процесса электролиза, в результате которого образуется щелочь, нейтрализующая в процессе экстракции кислоту. Это снижает интенсивность извлечения компонентов.
Техническим результатом является повышение эффективности извлечения алюминия и железа при экстракции из золошлакового материала, снижение затрат на реагентную обработку материала.
Технический результат достигается тем, что в способе извлечения алюминия и железа из золошлаковых отходов, включающем обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор, перед экстракцией алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо, а экстракцию алюминийсодержащих компонентов проводят из немагнитной фракции сначала обработкой 60-85%-ным раствором ортофосфорной кислоты в течение 3 часов при температуре 100-120°С с последующей фильтрацией и затем обработкой осадка раствором серной кислоты, при этом обработку ведут 30%-ным раствором серной кислоты.
Совокупность новых существенных признаков позволяет решить новую техническую задачу по извлечению алюминий- и железосодержащих компонентов из золошлаковых отходов.
На чертеже - схема извлечения алюминий- и железосодержащих компонентов золошлаковых отходов с использованием магнитной сепарации и кислотной экстракции.
Реализация способа осуществлялась следующим образом.
Золошлаковый материал, содержащий ценные компоненты (таблица 1), измельчался и классифицировался до крупности -2,0+0,0 мм и подвергался процессу магнитной сепарации для отделения магнитной фракции, содержащей железо и другие тяжелые металлы.
Процесс проводили в несколько стадий (3-5 перечисток) с увеличением поля магнитной индукции на перечистных операциях для увеличения степени извлечения магнитной фракции. Технологические показатели процесса сепарации приведены в таблице 2.
Немагнитная фракция (хвосты магнитной сепарации) подвергалась двух стадийной экстракции растворами ортофосфорной и серной кислот. На первой стадии обработка проводилась 60-85% раствором ортофосфорной кислоты, что увеличило выход алюминийсодержащих компонентов из стекловидной фазы золошлакового материала. Варьированием температуры, времени реакции и концентрации кислоты, анализом полученных данных выявлены условия процесса экстракции алюминия, при которых извлечение является наибольшим при времени 3 часа и температуре 100-120°С. По истечении времени экстракции осадок отделяется от маточного раствора фильтрованием. Маточный раствор, отделенный от алюминийсодержащих компонентов, возвращается в технологический цикл обработки исходного материала золошлакового отхода.
На второй стадии осадок обрабатывается 20-30% раствором серной кислоты. Раствор алюминийсодержащего компонента отделяется от силикатной составляющей фильтрованием. Определение количества алюминия велось фотометрическим методом с алюминоном по ГОСТ 18165-89 [4], определение железа титрованием с роданидом калия.
Реализация способа позволила достичь 60-65% извлечение алюминийсодержащих компонентов. Двухстадийный процесс экстракции позволяет увеличить селективность извлечения алюминийсодержащих компонентов, благодаря различной растворимости фосфатов основных компонентов золы в кислотах. Условия процесса извлечения не требуют применения специального типа оборудования. Процесс можно проводить без использования автоклава в кислотоустойчивом реакторе с мешалкой. Широкое использование способа обеспечит экономическую и экологическую эффективность за счет утилизации широко распространенного отхода теплоэнергетики.
Источники информации
1. Патент №2220098 РФ. Способ получения сульфата алюминия / Акимов И.Я., Ермаков М.В., Мельников Г.М., Парахин Ю.А.
2. Патент №2315715 РФ. Способ получения сульфата алюминия / Захаревский В.Н., Имангулов Р.Р.
3. Патент №2122975 РФ. Способ получения коагулянта / Ханин А.Б., Иванов А.Д., Будыкина Т.А.
4. ГОСТ 18165-89 «Вода питьевая. Метод определения массовой концентрации алюминия».
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ | 2018 |
|
RU2685608C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ КОМПОНЕНТОВ ИЗ ТЕХНОГЕННОГО МАТЕРИАЛА ТОНКОГО КЛАССА | 2012 |
|
RU2486012C1 |
СПОСОБ ПЕРЕРАБОТКИ СЛАБОМАГНИТНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ | 2018 |
|
RU2677391C1 |
СПОСОБ ПРОИЗВОДСТВА ЦЕМЕНТНОГО КЛИНКЕРА | 2012 |
|
RU2555980C2 |
СПОСОБ ОБОГАЩЕНИЯ ЗОЛОШЛАКОВЫХ СМЕСЕЙ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ ДЛЯ ПРОИЗВОДСТВА СТРОИТЕЛЬНЫХ ВЯЖУЩИХ | 2023 |
|
RU2806396C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ И ИТТРИЯ ИЗ УГЛЕЙ И ЗОЛОШЛАКОВЫХ ОТХОДОВ ОТ ИХ СЖИГАНИЯ | 2005 |
|
RU2293134C1 |
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОШЛАКОВЫХ МАТЕРИАЛОВ УГОЛЬНЫХ ЭЛЕКТРОСТАНЦИЙ | 2012 |
|
RU2529901C2 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ КРАСНЫХ ШЛАМОВ | 2022 |
|
RU2782894C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ЗОЛЫ ОТ СЖИГАНИЯ УГЛЕЙ | 2015 |
|
RU2605987C1 |
Способ получения оксидов кремния, алюминия и железа при комплексной безотходной переработке из золошлаковых материалов | 2018 |
|
RU2694937C1 |
Изобретение относится к области переработки полезных ископаемых и может быть использовано при обогащении золошлаковых отходов, сырья техногенного характера, содержащего железо и алюминий. Способ извлечения алюминия и железа из золошлаковых отходов включает обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор. Перед экстракцией алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо. Техническим результатом является повышение эффективности извлечения алюминия и железа при экстракции из золошлакового материала, снижение затрат на реагентную обработку материала. 1 ил., 2 табл.
Способ извлечения алюминия и железа из золошлаковых отходов, включающий обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор, отличающийся тем, что перед экстракций алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо, а экстракцию алюминийсодержащих компонентов проводят из немагнитной фракции сначала обработкой 60-85%-ным раствором ортофосфорной кислоты в течение 3 ч при температуре 100-120°С с последующей фильтрацией и затем обработкой осадка раствором серной кислоты, при этом обработку ведут 30%-ным раствором серной кислоты.
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА | 1997 |
|
RU2122975C1 |
СПОСОБ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ ОТХОДОВ | 1994 |
|
RU2086679C1 |
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА | 2000 |
|
RU2200708C2 |
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ | 2000 |
|
RU2296624C2 |
СПОСОБ ОЧИСТКИ ВОДОРОДСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ ОТ КИСЛОРОДОСОДЕРЖАЩИХ ПРИМЕСЕЙ | 0 |
|
SU200102A1 |
DE 4200479 A1, 16.07.1992 | |||
US 6214302 B1, 10.04.2001 | |||
US 4567026 A, 28.01.1986. |
Авторы
Даты
2011-12-20—Публикация
2010-11-01—Подача