СПОСОБ ОЦЕНКИ СЫПУЧЕСТИ ПОРОШКООБРАЗНЫХ ВЕЩЕСТВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2015 года по МПК G01F13/00 

Описание патента на изобретение RU2541726C2

Изобретение относится к механике неоднородных сред и может быть использовано в химической промышленности, металлургии, фармакологии, производстве моющих средств, минеральных удобрений, строительных материалов, ядовитых и взрывчатых веществ и т.д.

Известен способ оценки сыпучести порошкообразных веществ с помощью так называемого угла естественного откоса (Основы дозирования и таблетирования лекарственных порошков. Белоусов В.А., Вальтер М.Б. - М.: Медицина, 1980, С.41-42), основанного на измерении угла между горизонтальной поверхностью и образующей конуса насыпанного на нее порошкообразного материала. Наряду с простотой и наглядностью этот способ оценки сыпучести имеет невысокую точность и требует для своего осуществления использования относительно большого количества испытуемого вещества (десятки граммов).

Известны различные варианты способа оценки сыпучести, основанные на просыпании порошкообразных веществ из воронки через некоторое отверстие в ее основании в единицу времени. Так, например, в соответствии с ГОСТ 25139 (Пластмассы. Метод определения сыпучести. Дата введения 01.01.95) для оценки сыпучести измеряется время, требуемое для прохождения определенной массы испытуемого вещества через воронку заданных размеров. Однако, по этому способу, масса испытуемого вещества в граммах должна быть в сто раз больше величины его насыпной плотности, измеренной в г/мл, или может быть равна 150±1 г.

Наиболее близким к предлагаемому изобретению (прототип) является способ оценки сыпучести с использованием простейшего прибора со стационарно закрепленной воронкой (Основы дозирования и таблетирования лекарственных порошков. Белоусов В.А., Вальтер М.Б. - М.: Медицина, 1980. С.48). Данный прибор работает следующим образом: исследуемый материал равномерно засыпают в воронку при закрытой заслонке, которая перекрывает отверстие для высыпания вещества. Затем открывают заслонку и одновременно включают секундомер, определяя время, за которое из воронки высыпается 2·10-4 м3 материала. Сыпучесть оценивают по формуле

V c = G m 0 , 785 d 2 t ,

где Vc - сыпучесть, кг/м2·с; Gm - масса сыпучего материала, прошедшего через бункер, кг; d - диаметр выпускного отверстия, м; t - время высыпания, с;

Приведенные устройство и способ оценки сыпучести обладают следующими недостатками:

- сыпучесть может быть найдена в основном только для гранулированных, хорошо сыпучих материалов, сыпучесть материалов связанного характера движения на подобных приборах определить невозможно, так как они зависают в воронке;

- для оценки сыпучести необходимо использование сравнительно большого количества испытуемого вещества объемом не менее 200 см3;

- для повышения точности оценки сыпучести необходимо проводить несколько измерений, что, в свою очередь, увеличивает длительность эксперимента и количество используемого вещества.

Кроме того, этим способом невозможно оценить сыпучесть вещества в условиях, приближенных к реальному дозированию в таблетировочных автоматах, где допуски по массе при изготовлении, например, таблеток составляют несколько миллиграмм (Основы дозирования и таблетирования лекарственных порошков. Белоусов В.А., Вальтер М.Б. - М.: Медицина, 1980. С.95).

Технический результат, на решение которого направлено изобретение, заключается в повышении точности оценки сыпучести в условиях, приближенных к дозированию небольших количеств веществ, снижении количества используемого вещества и времени на проведение эксперимента.

Технический результат достигается тем, что в способе оценки сыпучести порошкообразных веществ, включающем процесс свободного истечения испытуемого вещества из воронкообразного бункера фиксированного объема через отверстие в его основании, с определением параметра процесса, характеризующего сыпучесть вещества, испытуемое вещество поочередно дозируют в несколько емкостей с одинаковым объемом, а в качестве параметра процесса оценки сыпучести определяют относительную погрешность среднего значения измеряемой величины массы порции дозируемого вещества - относительный разброс навески, которую рассчитывают по формуле

С = Δ m c p . m c p . 100 % ,

где С - относительный разброс навески, %,

mср - среднее арифметическое значение массы порций дозируемого вещества, г;

Δmср - среднее арифметическое значение отклонения массы порции дозируемого вещества от его среднего значения (mср), г.

В настоящее время все в большей степени возрастают требования к точности дозирования порошкообразных веществ при изготовлении различных изделий от миниатюрных таблеток до сверхминиатюрных средств инициирования взрывных процессов. Так, например, процесс миниатюризации таблеток лекарственных веществ привел к изготовлению таблеток с допуском на массу ±3 мг (Основы дозирования и таблетирования лекарственных порошков. Белоусов В.А., Вальтер М.Б. - М.: Медицина, 1980, С.95). Не последнюю роль в обеспечении подобной точности дозирования играет сыпучесть самих дозируемых веществ, на величину которой оказывают влияние большое количество факторов: плотность, форма, размер и удельная поверхность частиц, силы адгезии и когезии, электризуемость и т.п. В связи с этим целью данного изобретения явились разработка такого способа оценки сыпучести, с помощью которого можно было бы одновременно достаточно быстро и с большой точностью оценить и погрешность дозирования вещества в условиях приближенных к реальным, и устройства для его осуществления. В предлагаемом способе за меру сыпучести принято выборочное стандартное отклонение порции дозируемого вещества - так называемый относительный «разброс навески» вещества. Данный способ оценки сыпучести не требует использования большого количества испытуемого вещества, что особенно важно, например, при испытании чувствительных к внешним воздействиям взрывчатых материалов. Кроме того, количество одновременно дозируемых порций вещества может быть каким угодно, что значительно увеличивает точность оценки его сыпучести.

Способ оценки сыпучести по данному изобретению состоит в следующем: испытуемое вещество высушивается до постоянного веса и загружается в каждый бункер устройства в количестве 0,2-0,5 г. В устройство устанавливаются коробки для приемки дозируемого вещества и одна коробка для его избытка. Затем вещество последовательно дозируется в несколько емкостей с одинаковыми объемами, а затем высыпается из них в приемные коробки. Далее определяется масса порции вещества в каждой коробке mi, после чего рассчитываются средняя масса вещества в коробках mср, отклонение от средней массы Δmi и среднее значение этого отклонения Δmср. Мерой сыпучести является выборочное стандартное отклонение порции дозируемого вещества - так называемый относительный «разброс навески» вещества, который определяется по формуле

С = Δ m c p . m c p . 100 %

Ориентировочно, сыпучесть вещества считается хорошей, если величина относительного разброса его навески будет меньше или равна 10% (С≤10%), удовлетворительной - от 10 до 15% (10%<С≤15%) и плохой - более 15% (С>15%).

В качестве примера приводится оценка сыпучести тетразена и азида свинца - инициирующих взрывчатых веществ, которые широко применяются при изготовлении различных средств инициирования взрывных процессов, таких как капсюли-воспламенители и капсюли-детонаторы (Багал Л.И. Химия и технология инициирующих взрывчатых веществ. - М.: Машиностроение, 1975. - С.135, 387). Образцы тетразена и азида свинца были получены в разных технологических условиях и поэтому отличались своими характеристиками, которые, в свою очередь, придавали им различную сыпучесть. Экспериментальные и расчетные характеристики тетразена и азида свинца приведены в таблицах 1-6.

Таблица 1 Экспериментальные и расчетные характеристики образца тетразена №1 Насыпная плотность - 0,45 г/см3, средний размер кристаллов - около 30 мкм, форма кристаллов - игольчатая Номер коробки Масса продукта с коробкой, г Масса коробки, г Масса продукта, mi, г mcp, г Δmi, г Δmср, г Относительный разброс навески C, % 1 0,1475 0,1404 0,0071 0,0044 0,0027 0,0016 35,5 2 0,1677 0,1609 0,0068 0,0024 3 0,1518 0,1486 0,0032 0,0012 4 0,1741 0,1711 0,0030 0,0014 5 0,1217 0,1173 0,0044 0,0000 6 0,1416 0,1410 0,0057 0,0013 7 0,1741 0,1711 0,0030 0,0014 8 0,1175 0,1152 0,0023 0,0021

Таблица 2 Экспериментальные и расчетные характеристики образца тетразена №2 Насыпная плотность - 0,51 г/см3, средний размер кристаллов - около 30 мкм, форма кристаллов - игольчатая Номер коробки Масса продукта с коробкой, г Масса коробки, г Масса продукта, mi, г mср, г Δmi, г Δmср, г Относительный разброс навески C, % 1 0,1469 0,1408 0,0061 0,0043 0,0018 0,0011 25,58 2 0,1672 0,1614 0,0058 0,0015 3 0,1512 0,1490 0,0022 0,0021 4 0,1760 0,1718 0,0042 0,0001 5 0,1213 0,1176 0,0037 0,0006 6 0,1443 0,1413 0,0030 0,0013 7 0,1510 0,1456 0,0044 0,0001 8 0,1202 0,1154 0,0048 0,0005

Таблица 3 Экспериментальные и расчетные характеристики образца тетразена №3 Насыпная плотность - 0,66 г/см3, средний размер кристаллов - около 100 мкм, форма кристаллов - листообразная Номер коробки Масса продукта с коробкой, г Масса коробки, г Масса продукта, mi, г mср, г Δmi, г Δmср, г Относительный разброс навески c, % 1 0,1554 0,1403 0,0151 0,0164 0,0013 0,0014 8,53 2 0,1754 0,1603 0,0151 0,0013 3 0,1621 0,1480 0,0141 0,0023 4 0,1873 0,1704 0,0169 0,0005 5 0,1311 0,1108 0,0203 0,0039 6 0,1580 0,1408 0,0172 0,0008 7 0,1623 0,1458 0,0162 0,0002 8 0,1316 0,1147 0,0169 0,0005

Таблица 4 Экспериментальные и расчетные характеристики образца тетразена №4 Насыпная плотность - 0,72 г/см3, средний размер кристаллов - около 100 мкм, форма кристаллов - брускообразная Номер коробки Масса продукта с коробкой, г Масса коробки, г Масса продукта, mi, г mcp, г Δmi, г Δmср, г Относительный разброс навески C, % 1 0,1570 0,1411 0,0159 0,0165 0,0006 0,0006 3,63 2 0,1776 0,1618 0,0158 0,0007 3 0,1659 0,1492 0,0167 0,0002 4 0,1886 0,1723 0,0163 0,0002 5 0,1338 0,1178 0,0160 0,0005 6 0,1594 0,1415 0,0179 0,0014 7 0,1616 0,1457 0,0159 0,0006 8 0,1331 0,1157 0,0174 0,0009

Таблица 5 Экспериментальные и расчетные характеристики образца азида свинца №1 Насыпная плотность - 1,50 г/см3, средний размер кристаллов - около 250 мкм, форма кристаллов - короткостолбчатая Номер коробки Масса продукта с коробкой, г Масса коробки, г Масса продукта, mi, г mср, г Δmi, г Δmср, г Относительный разброс навески C, % 1 0,1994 0,1416 0,0578 0,0560 0,00177 0,00096 1,72 2 0,2191 0,1625 0,0566 0,00057 3 0,2077 0,1505 0,0572 0,00117 4 0,2292 0,1728 0,0564 0,00037 5 0,1744 0,1186 0,0558 0,00023 6 0,1980 0,1425 0,0555 0,00053 7 0,2017 0,1473 0,0544 0,00163 8 0,1711 0,1165 0,0546 0,00143

Таблица 6 Экспериментальные и расчетные характеристики образца азида свинца №2 Насыпная плотность - 1,58 г/см3, средний размер кристаллов - около 150 мкм, форма кристаллов - округлая Номер коробки Масса продукта с коробкой, г Масса коробки, г Масса продукта, mi, г mcp, г Δmi, г Δmср, г Относительный разброс навески C,% 1 0,2006 0,1416 0,0590 0,0583 0,0007 0,0005 0,86 2 0,2205 0,1625 0,0591 0,0008 3 0,2023 0,1505 0,0585 0,0002 4 0,2259 0,1728 0,0587 0,0004 5 0,1737 0,1186 0,0581 0,0002 6 0,1991 0,1425 0,0580 0,0003 7 0,1996 0,1473 0,0566 0,0017 8 0,1733 0,1165 0,0581 0,0002

Разработанный способ оценки сыпучести веществ в течение длительного времени применяется при проведении исследований по улучшению сыпучести энергонасыщенных материалов различных классов. Этот способ отличается большой точностью, оперативностью и безопасностью.

Известны различные варианты устройств для оценки сыпучести порошкообразных веществ, основой которых является воронкообразный бункер с отверстием у основания, через которое просыпают испытуемое вещество.

Наиболее близким к изобретению (прототип) является простейшее устройство, представляющее стационарно закрепленную воронку с цилиндрическим каналом у основания, в которую помещается испытуемое вещество (Основы дозирования и таблетирования лекарственных порошков. Белоусов В.А., Вальтер М.Б. - М.:Медицина, 1980. С.48). Данное устройство работает следующим образом: исследуемый материал равномерно засыпают в воронку при закрытой заслонке, которая перекрывает отверстие для высыпания вещества. Затем открывают заслонку и одновременно включают секундомер, определяя время, за которое из воронки высыпается 2·10-4 м3 материала. Наряду с простотой конструкции это устройство обладает следующими недостатками:

- необходимость использования сравнительно большого количества испытуемого вещества объемом не менее 200 см3, что не позволяет использовать это устройство для оценки сыпучести высокочувствительных взрывчатых веществ;

- сравнительно большая длительность оценки сыпучести (с учетом дублирования экспериментов);

- не имитирует реальные условия дозирования небольших количеств веществ.

Технический результат, на решение которого направлено изобретение, заключается в создании эффективного устройства по оценке сыпучести, имитирующее реальные условия дозирования, способное с высокой точностью и за короткое время оценивать сыпучесть веществ, взятых в небольших количествах.

Технический результат достигается тем, что в устройстве, состоящем из воронкообразного бункера с отверстием в основании и заслонки, при открытии которой испытуемое вещество из бункера может свободно высыпаться, содержится два воронкообразных бункера, выполненных в виде сквозных отверстий в бункерной пластине, ниже которой с зазором размещена другая, упорная пластина, с двумя сквозными отверстиями, оси которых смещены относительно осей отверстий бункеров, а заслонка выполнена в виде пластины-средника с двумя рядами одинаковых отверстий, к которой снизу закреплена приемная пластина с размещенными на ней приемными емкостями для испытуемого вещества, количество которых равно количеству отверстий в пластине-среднике, причем пластина-средник перемещается внутри зазора между бункерной и опорной пластинами с помощью электромотора.

На рисунке 1 изображено предлагаемое устройство для оценки сыпучести порошкообразных веществ, где: 1 - крюк со шнуром; 2 - картонный поддон; 3 - пластина-средник; 4 - бункерная пластина; 5 - бункер; 6 - отверстие для отмеривания порции испытуемого вещества; 7 - отверстие для ссыпки избытка испытуемого вещества; 8 - защитный бронещит; 9 - шток; 10 - утолщение штока; 11 - кнопка отключения электромотора; 12 - тумблер включения электромотора; 13 - перемычка; 14 - приемная емкость для избытка испытуемого вещества; 15 - приемная емкость для испытуемого вещества; 16 - ссыпное отверстие; 17 - опорная пластина; 18 - приемная пластина; 19 - электромотор. На рисунке предлагаемое устройство показано перед началом проведения работы по оценке сыпучести испытуемого вещества.

Оценка сыпучести взрывоопасного испытуемого вещества с помощью предлагаемого устройства проводится следующим образом. Устройство устанавливают за защитным бронещитом 8. На картонный поддон 2 (рисунок 1) укладывают два ряда (восемь штук) взвешенных приемных емкостей 15 для испытуемого вещества и одну емкость 14 для его избытка. В качестве емкостей используются коробки, изготовленные из кальки. Затем картонный поддон 2 с емкостями укладывают на приемную пластину 18. После этого устройство снаряжают испытуемым веществом. В каждый из двух бункеров 5 бункерной пластины 4 объемной меркой насыпают одинаковое количество испытуемого вещества с избытком. Количество испытуемого вещества и его избытка зависит от объема и количества емкостей, образованных сквозными отверстиями 6 для отмеривания порций испытуемого вещества, конкретного вещества и определяется экспериментально. В приведенном выше примере определения относительного «разброса навески» вещества оно составляло 0,25-0,50 г. После заполнения испытуемым веществом обоих бункеров исполнитель выходит из-за щита и тумблером 12 включает электромотор. Пластина-средник 3 начинает равномерно двигаться по направлению стрелки (рисунок 1) и дозировать испытуемое вещество в приемные емкости. Порции вещества отмериваются с помощью емкостей для дозирования, в качестве которых используются восемь расположенных в два ряда сквозных отверстий 6 в пластине-среднике 3. Процесс дозирования вещества в устройстве происходит следующим образом: при движении пластины-средника 3 вначале происходит совмещение очередной пары отверстий 6 в пластине-среднике с основаниями сквозных отверстий двух бункеров 5 в бункерной пластине 4. В течении этого процесса основание сквозных отверстий 6 оказывается перекрытым частью опорной пластины 17, поэтому испытуемое вещество, высыпаясь из бункеров, заполняет два отверстия 6. Пластина-средник продолжает движение и через какое-то время порции вещества, находящиеся внутри двух отверстий 6, высыпаются через два ссыпных отверстия 16 в опорной пластине 17 в две приемные емкости 15. После высыпания вещества из восьми сквозных отверстий 6 в приемные коробки 15 таким же образом происходит высыпание остатка (избытка) вещества из двух отверстий 7 в одну приемную коробку 14.

Дойдя до крайнего левого положения, утолщение штока 10, закрепленного на перемычке 13, нажимает на кнопку отключения электромотора 11 и пластина-средник останавливается. После этого исполнитель отключает тумблер питания 12 электромотора 19 устройства.

Далее, исполнитель, зайдя за щит, осторожно снимает картонный поддон 2 с приемной пластины 18 и переносит его к весам для последующего взвешивания приемных емкостей. После этого исполнитель, зайдя за щит, снимает крюк с тянущим шнуром 1, а потом из-за щита выкручивает шток 9 устройства. Затем, устройство устанавливается на поддон и переносится на лабораторный стол, где укладывается за прозрачный защитный щит, после чего разбирается и протирается от пыли испытуемого вещества. Протертые детали собираются, и устройство устанавливается за бронещитом 8, после чего оно готово для следующего эксперимента. Значения масс коробок с веществом заносятся в таблицу, а затем в соответствии с вышеизложенной методикой рассчитывается относительный разброс навески испытуемого вещества, по величине которого оценивается его сыпучесть.

Похожие патенты RU2541726C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТЕТРАЗЕНА 2014
  • Гидаспов Александр Александрович
  • Рекшинский Владимир Андреевич
  • Бурмистров Олег Викторович
  • Усенко Алексей Геннадьевич
  • Трохин Олег Вадимович
RU2593636C2
Устройство для дозирования взрывчатого вещества объемным способом 1970
  • Кутергин Александр Иванович
  • Петров Марк Петрович
  • Рыбочкин Евгений Александрович
  • Соколов Александр Петрович
  • Силин Виктор Степанович
SU1841254A1
СПОСОБ ДВУХСТАДИЙНОГО ДОЗИРОВАНИЯ И СМЕШИВАНИЯ КОМПОНЕНТОВ СМЕСИ 2016
  • Шумихин Александр Георгиевич
  • Сташков Сергей Игоревич
  • Сокольчик Павел Юрьевич
RU2621176C1
БУНКЕРНЫЙ ДОЗАТОР ДЛЯ СЫПУЧИХ ГРУЗОВ 2005
  • Горюшинский Владимир Сергеевич
  • Варламов Александр Васильевич
  • Головин Вадим Вячеславович
RU2282158C1
Автоматический объемно-весовой дозатор 1970
  • Холодов Александр Николаевич
  • Кучин Лев Николаевич
  • Рыбочкин Евгений Александрович
  • Шубин Николай Сергеевич
SU1841250A1
БУНКЕРНЫЙ ДОЗАТОР ДЛЯ СЛЕЖИВАЮЩИХСЯ СЫПУЧИХ МАТЕРИАЛОВ 2007
  • Горюшинский Владимир Сергеевич
  • Мальков Вадим Александрович
RU2343425C1
Способ комбинированного порционного многокомпонентного дозирования сыпучих,липких и вязких материалов и устройство для его осуществления 1985
  • Бочаров Владислав Степанович
  • Марышев Борис Степанович
  • Курочкин Валерий Анатольевич
  • Тропин Леонид Иванович
  • Заболотный Валентин Моисеевич
  • Декань Владислав Александрович
  • Эунапу Юрий Мартынович
  • Коваленко Олег Андреевич
SU1383104A1
Устройство для ввода дисперсных частиц 1985
  • Кириевский Борис Абрамович
  • Коструба Вячеслав Григорьевич
  • Герштейн Григорий Исаакович
  • Преснецов Геннадий Павлович
  • Волков Виктор Николаевич
SU1329907A1
ПОРОШКООБРАЗНАЯ КОМПОЗИЦИЯ ДЛЯ ПРИГОТОВЛЕНИЯ НАПИТКА ИЛИ ПИЩЕВОГО ПРОДУКТА 2020
  • Ролер, Фабьен
  • Хайне, Мануэль
  • Ваксман, Люсиль
  • Расин, Хьюз
RU2824394C2
МОБИЛЬНАЯ УСТАНОВКА ДЛЯ ПРИГОТОВЛЕНИЯ КОРМОЛЕКАРСТВЕННЫХ СМЕСЕЙ 2013
  • Афанасьев Валерий Андреевич
  • Щеблыкин Владимир Михайлович
  • Орлов Евгений Леонидович
  • Скулков Владимир Михайлович
RU2545951C2

Реферат патента 2015 года СПОСОБ ОЦЕНКИ СЫПУЧЕСТИ ПОРОШКООБРАЗНЫХ ВЕЩЕСТВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к механике неоднородных сред и может быть использовано в химической промышленности, металлургии, фармакологии, производстве моющих средств, минеральных удобрений, строительных материалов, ядовитых и взрывчатых веществ и т.д. Способ оценки сыпучести порошкообразных веществ основан на последовательном дозировании нескольких небольших порций испытуемого вещества одинакового объема и последующего определения стандартного отклонения порции дозируемого вещества (относительного «разброса навески» вещества), которое является мерой сыпучести вещества, и определяют сыпучесть вещества расчетным путем. Устройство для осуществления данного способа содержит два воронкообразных бункера с отверстием в основании и заслонку, при открытии которой испытуемое вещество из бункера может свободно высыпаться. Указанные воронкообразные бункеры выполнены в виде сквозных отверстий в бункерной пластине, ниже которой с зазором размещена другая, упорная пластина, с двумя сквозными отверстиями, оси которых смещены относительно осей отверстий бункеров. Заслонка выполнена в виде пластины-средника с двумя рядами одинаковых отверстий, к которой снизу закреплена приемная пластина с размещенными на ней приемными емкостями для испытуемого вещества, количество которых равно количеству отверстий в пластине-среднике. Данная пластина-средник перемещается внутри зазора между бункерной и опорной пластинами с помощью электромотора. Предложенная группа изобретений позволяет повысить точность оценки сыпучести при дозировании небольшого количества сыпучих веществ. 2 н.п. ф-лы, 6 табл., 1 ил.

Формула изобретения RU 2 541 726 C2

1. Способ оценки сыпучести порошкообразных веществ, включающий процесс свободного истечения испытуемого вещества из воронкообразного бункера фиксированного объема через отверстие в его основании, с определением параметра процесса, характеризующего сыпучесть вещества, отличающийся тем, что вещество поочередно дозируют в несколько емкостей с одинаковым объемом, а в качестве параметра процесса оценки сыпучести определяют относительную погрешность среднего значения измеряемой величины массы порции дозируемого вещества - относительный разброс навески, которую рассчитывают по формуле
,
где С - относительный разброс навески, %;
mср - среднее арифметическое значение массы порций дозируемого вещества, г;
Δmср - среднее арифметическое значение отклонения массы порции дозируемого вещества от его среднего значения (mср), г.

2. Устройство для осуществления способа по п.1, состоящее из воронкообразного бункера с отверстием в основании и заслонки, при открытии которой испытуемое вещество из бункера может свободно высыпаться, отличающееся тем, что содержит два воронкообразных бункера, выполненных в виде сквозных отверстий в бункерной пластине, ниже которой с зазором размещена другая, упорная пластина, с двумя сквозными отверстиями, оси которых смещены относительно осей отверстий бункеров, а заслонка выполнена в виде пластины-средника с двумя рядами одинаковых отверстий, к которой снизу закреплена приемная пластина с размещенными на ней приемными емкостями для испытуемого вещества, количество которых равно количеству отверстий в пластине-среднике, причем пластина-средник перемещается внутри зазора между бункерной и опорной пластинами с помощью электромотора.

Документы, цитированные в отчете о поиске Патент 2015 года RU2541726C2

Основы дозирования и таблетирования лекарственных порошков
Белоусов В.А., Вальтер М.Б
- М.: Медицина, 1980, С.41-42
ДОЗАТОР ПОРОШКОВ ДЛЯ УСТРОЙСТВА ТАБЛЕТИРОВАНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ ТАБЛЕТОК ЯДЕРНОГО ТОПЛИВА 2006
  • Энгелвин Паскаль
  • Паж Жан-Пьер
  • Пандро Жан-Люк
  • Лавуан Реми
RU2427447C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ТЕКУЧЕСТИ ПОРОШКООБРАЗНЫХ МАТЕРИАЛОВ 2011
  • Колосов Герман Георгиевич
  • Чудинова Клара Васильевна
  • Гончарова Наталья Борисовна
  • Царева Ольга Николаевна
  • Бикбулатов Рауф Сибгатович
  • Бутенко Людмила Ивановна
RU2457462C1
ЕР 1052086 А2, 15.11.2000

RU 2 541 726 C2

Авторы

Пыжов Александр Михайлович

Тарасов Александр Константинович

Усенко Алексей Геннадьевич

Пыжова Татьяна Ивановна

Абрамов Артем Александрович

Даты

2015-02-20Публикация

2013-05-07Подача