СПОСОБ РАБОТЫ ТЕПЛОВОГО ПУНКТА Российский патент 2015 года по МПК F24D3/00 

Описание патента на изобретение RU2542563C1

Изобретение относится к области тепловой энергетики и может быть использовано в системах централизованного теплоснабжения для предотвращения образования илистых отложений на внутренних поверхностях водоподогревателей и трубопроводов.

Аналогом является способ регулирования режима работы теплового пункта, оборудованного водо-водяным элеватором и коммерческим узлом учета тепловой энергии, включающий подачу сетевой воды в систему отопления и горячего водоснабжения путем подмешивания теплоносителя из обратного трубопровода через побудительно-смесительный насос, при этом изменяют и регулируют соотношение расходов сетевого и подмешиваемого теплоносителей приводом насоса центробежного типа, превышают напор подмешиваемого теплоносителя над условно-постоянным напором сетевой воды в подающем трубопроводе, поддерживают при этом расчетное теплопотребление объекта, подмешиваемый теплоноситель отбирают из зоны потока в обратном трубопроводе с минимальным динамическим напором сетевой воды у стенки трубы и подают в зону максимального динамического напора сетевой воды в подающем трубопроводе в центр трубы (патент RU №2313730, МПК F24D 3/00, 27.12.2007)

Прототипом является способ работы теплового пункта, который содержит последовательно соединенные трубопровод холодной воды, циркуляционный насос, выполненный с возможностью обеспечения градиента скорости течения воды в пристеночной области трубопровода посредством частотно-регулируемого привода, прибор для измерения давления, водоподогреватель, трубопровод горячей воды, а также обратный и прямой трубопроводы тепловой сети, соединенные с водоподогревателем (СП41-101-95. Своды правил по проектированию и строительству. Проектирование тепловых пунктов. Дата введения 01.07.1996. Разработаны Техническим комитетом Ассоциации инженеров по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике (АВОК), Агентством по энергосбережению Правительства Москвы, Министерством России, ВНИПИэнергопромом Минтопэнерго России).

Согласно известному способу работы теплового пункта холодная вода из водопровода под давлением, создаваемым циркуляционным насосом, выполненным с возможностью обеспечения градиента скорости течения воды в пристеночной области трубопровода посредством частотно-регулируемого привода, поступает в водоподогреватель, в котором происходит теплообмен между холодной водой из водопровода и водой из обратного трубопровода тепловой сети, затем подогретая вода поступает в трубопровод горячего водоснабжения и далее к потребителям.

Основным недостатком известных способов является то, что при работе теплового пункта не предотвращается образование илистых отложений на внутренних поверхностях водоподогревателя и трубопроводов (не обеспечивается самоочищение внутренних поверхностей трубопроводов), т.к. частотно-регулируемый привод используют для обеспечения экономии энергии, а не для создания пульсации потока воды, необходимого для обеспечения высокого градиента скорости течения воды в пристеночной области трубопровода и повышения коэффициента трения потока воды о внутреннюю поверхность трубопровода.

Задачей изобретения является предотвращение образования при работе теплового пункта илистых отложений на внутренних поверхностях водоподогревателя и трубопроводов за счет обеспечения пульсации потока воды.

Технический результат достигается тем, что в способе работы теплового пункта, согласно которому холодная вода из водопровода под давлением, создаваемым циркуляционным насосом, выполненным с возможностью обеспечения градиента скорости течения воды в пристеночной области трубопровода посредством частотно-регулируемого привода, поступает в водоподогреватель, в котором происходит теплообмен между холодной водой из водопровода и водой из обратного трубопровода тепловой сети, затем подогретая вода поступает в трубопровод горячего водоснабжения и далее к потребителям, согласно предлагаемому изобретению холодную воду из водопровода под давлением, создаваемым циркуляционным насосом, подают при помощи частотно-регулируемого привода циркуляционного насоса, с пульсацией потока воды с частотой 1-2 Гц и амплитудой 0.10-0.12 от номинального расхода.

Пульсация потока воды с указанной частотой и амплитудой обеспечивает высокий градиент скорости течения воды в пристеночной области трубопровода и повышение коэффициента трения потока воды о внутреннюю поверхность трубопровода.

Сущность изобретения поясняется чертежом, на котором изображена функциональная схема теплового пункта.

На чертеже имеются следующие обозначения:

1 - циркуляционный насос с частотно-регулируемым приводом,

2 - прибор для измерения давления,

3 - водоподогреватель.

Тепловой пункт содержит последовательно соединенные трубопровод холодной воды, циркуляционный насос 1, выполненный с возможностью обеспечения градиента скорости течения воды в пристеночной области трубопровода и обеспечения пульсации потока воды посредством частотно-регулируемого привода, прибор 2 для измерения давления, водоподогреватель 3, трубопровод горячей воды, а также обратный и прямой трубопроводы тепловой сети, соединенные с водоподогревателем 3.

Способ работы теплового пункта осуществляют следующим образом.

Холодная вода из водопровода под давлением, создаваемым циркуляционным насосом 1 через прибор 2 для измерения давления, поступает в водоподогреватель 3. В водоподгревателе 3 происходит теплообмен между холодной водой из водопровода и воды из обратного трубопровода тепловой сети. Затем подогретая вода поступает в трубопровод горячего водоснабжения и далее к потребителям.

Отличием предлагаемого способа работы теплового пункта является то, что холодную воду из водопровода под давлением, создаваемым циркуляционным насосом, подают, при помощи частотно-регулируемого привода циркуляционного насоса, с пульсацией потока воды с частотой 1-2 Гц и амплитудой 0.10-0.12 от номинального расхода, обеспечивающего высокий градиент скорости течения воды в пристеночной области трубопровода и повышение коэффициента трения потока воды о внутреннюю поверхность трубопровода.

Для реализации такого режима используют алгоритм векторного управления циркуляционным насосом, при котором не только формируют гармонические токи (напряжения) фаз, но и обеспечивают управление магнитным потоком ротора (моментом на валу) двигателя насоса.

Благодаря пульсации потока воды изменяются профили скоростей потока в трубопроводе, соответственно меняется и безразмерный коэффициент трения.

Формула коэффициента трения между слоями:

где η - коэффициент вязкости;

d v d r - градиент скорости;

S - площадь поверхности, к которой приложена сила.

В частности, коэффициент трения, характеризующий градиент скорости, изменяется (при обеспечении пульсации потока воды с частотой 1-2 Гц с амплитудой 0.10-0.12 от номинального расхода) от 0,2 при фазе замедления потока (параметр не стационарности потока жидкости z=40) до 1,5 при фазе ускорения потока (параметр не стационарности потока жидкости z=-40).

Таким образом, из-за пульсации потока воды с частотой 1-2 Гц и амплитудой 0.10-0.12 от номинального расхода, достигается повышение градиента скорости в 7,5 раз (обеспечивается высокий градиент скорости течения воды в пристеночной области трубопровода), что приводит к отрыву отложений в пристеночной области трубопровода.

В способе-прототипе работы теплового пункта частотно регулируемый привод используют для обеспечения экономии на непроизводительных затратах энергии путем поддержания электродвигателя в режиме оптимального КПД.

В предлагаемом способе работы теплового пункта, используя то же оборудование, но при обеспечении пульсации потока воды с частотой 1-2 Гц и амплитудой 0.10-0.12 от номинального расхода, можно обеспечить еще и самоочищение внутренних поверхностей трубопроводов.

Использование предлагаемого изобретения позволит отказаться от ежегодной очистки внутренних поверхностей нагрева водоподогревателей и трубопроводов в центральных тепловых пунктах за счет их самоочистки от илистых отложений, что позволит повысить срок межремонтного периода тепловых коммуникаций.

Предлагаемый способ работы теплового пункта позволит отказаться от установок, использующих механические, химические, термические, акустические воздействия на илистые отложения, которые требуют проведения демонтажных и монтажных работ.

Похожие патенты RU2542563C1

название год авторы номер документа
СИСТЕМА ХОЗЯЙСТВЕННО-ПИТЬЕВОГО И ПРОТИВОПОЖАРНОГО ВОДОСНАБЖЕНИЯ 1996
  • Аболин В.Ю.
  • Волков В.З.
  • Грецов М.В.
  • Жиряков В.С.
  • Федоскин Г.А.
RU2106165C1
ТЕПЛОВОЙ ПУНКТ С ДОПОЛНИТЕЛЬНЫМИ ПОМЕЩЕНИЯМИ 2017
  • Конфедератов Виктор Сергеевич
RU2647774C1
СИСТЕМА ЦЕНТРАЛИЗОВАННОГО ТЕПЛОХЛАДОСНАБЖЕНИЯ 1968
  • В. М. Иванов, Б. С. Тихонов И. Ф. Усенко
SU217405A1
СИСТЕМА ГОРЯЧЕГО ВОДОСНАБЖЕНИЯасесоюанАя 1972
SU344228A1
СПОСОБ СНИЖЕНИЯ РАСХОДА ТЕПЛОВОЙ И ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ЦИРКУЛЯЦИОННОЙ СИСТЕМЕ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 2008
  • Ремезов Александр Николаевич
  • Сорокин Антон Владимирович
  • Кочанов Юрий Иванович
  • Крылов Юрий Алексеевич
  • Ильинский Николай Федотович
  • Бычкова Елена Владимировна
  • Штин Евгений Николаевич
RU2380619C1
СПОСОБ ПОДКЛЮЧЕНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ИСТОЧНИКА ТЕПЛОТЫ К СИСТЕМЕ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 2024
  • Черненков Владимир Петрович
  • Тарасова Елена Владимировна
  • Зырянов Евгений Андреевич
  • Трухин Евгений Константинович
RU2826917C1
АВТОМАТИЗИРОВАННЫЙ ТЕПЛОВОЙ ПУНКТ 1991
  • Мельниченко Владимир Васильевич
  • Мельниченко Сергей Владимирович
RU2031316C1
Конструкция индивидуального теплового пункта 2018
  • Самарин Олег Дмитриевич
RU2689873C1
Система горячего водоснабжения 1984
  • Андрейчук Юрий Николаевич
  • Кафиатуллин Рауф Абдулович
  • Морозов Николай Николаевич
  • Куницын Валерий Александрович
SU1257364A1
СИСТЕМА ТЕПЛОХЛАДОСНАБЖЕНИЯ 2015
  • Маленков Алексей Сергеевич
  • Шелгинский Александр Яковлевич
  • Яворовский Юрий Викторович
RU2609266C2

Реферат патента 2015 года СПОСОБ РАБОТЫ ТЕПЛОВОГО ПУНКТА

Изобретение относится к области тепловой энергетики и может быть использовано в системах централизованного теплоснабжения для предотвращения образования илистых отложений на внутренних поверхностях водоподогревателей и трубопроводов. Способе работы теплового пункта, согласно которому холодная вода из водопровода под давлением, создаваемым циркуляционным насосом, выполненным с возможностью обеспечения градиента скорости течения воды в пристеночной области трубопровода посредством частотно-регулируемого привода, поступает в водоподогреватель, в котором происходит теплообмен между холодной водой из водопровода и водой из обратного трубопровода тепловой сети, затем подогретая вода поступает в трубопровод горячего водоснабжения и далее к потребителям, согласно предлагаемому изобретению холодную воду из водопровода под давлением, создаваемым циркуляционным насосом, подают при помощи частотно-регулируемого привода циркуляционного насоса с пульсацией потока воды с частотой 1-2 Гц и амплитудой 0.10-0.12 от номинального расхода. Это позволяет предотвратить образование илистых отложений на внутренних поверхностях водоподогревателя и трубопроводов, при работе теплового пункта, за счет обеспечения пульсации потока воды. 1 ил.

Формула изобретения RU 2 542 563 C1

Способ работы теплового пункта, согласно которому холодная вода из водопровода под давлением, создаваемым циркуляционным насосом, выполненным с возможностью обеспечения градиента скорости течения воды в пристеночной области трубопровода посредством частотно-регулируемого привода, поступает в водоподогреватель, в котором происходит теплообмен между холодной водой из водопровода и водой из обратного трубопровода тепловой сети, затем подогретая вода поступает в трубопровод горячего водоснабжения и далее к потребителям, отличающийся тем, что холодную воду из водопровода под давлением, создаваемым циркуляционным насосом, подают, при помощи частотно-регулируемого привода циркуляционного насоса, с пульсацией потока воды с частотой 1-2 Гц и амплитудой 0.10-0.12 от номинального расхода.

Документы, цитированные в отчете о поиске Патент 2015 года RU2542563C1

СПОСОБ ОЧИСТКИ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ ПОЛЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Балтаханов А.М.
  • Балтаханов А.Х.
RU2254176C1
Способ промывки трубопровода 1986
  • Семенов Ю.М.
SU1392729A1
Способ очистки трубопроводов 1990
  • Беришвили Заур Давидович
  • Цхвирашвили Отар Давидович
  • Киасашвили Годердзи Иванович
  • Миндели Зураб Викторович
  • Талахадзе Вахтанг Владимирович
  • Чаладзе Джемал Шальвович
  • Кешелава Вадим Григорьевич
SU1733130A1
Ключевой усилитель мощности 1986
  • Беличенко Сергей Алексеевич
  • Первушов Владимир Ильич
SU1385252A1

RU 2 542 563 C1

Авторы

Гильфанов Камиль Хабибович

Хаматханов Рамис Фанависович

Минвалиев Наиль Юнусович

Даты

2015-02-20Публикация

2013-12-27Подача