Изобретение относится к области квантовой электроники, а именно к способам генерации когерентного электромагнитного излучения в ближнем ИК-диапазоне спектра, и может быть использовано при конструировании твердотельных лазеров с активной средой в виде диэлектрических кристаллов.
Для практических применений в медицине, а также для мониторинга газов (NH3, CH4 и др.) в атмосфере значительный интерес представляет лазерное излучение в диапазоне длин волн 1,9-2,2 мкм. В качестве активной среды лазеров, генерирующих излучение в этом спектральном диапазоне, обычно используются кристаллы, активированные ионами Tm3+, Ho3+.
Из литературных источников известно, что на кристаллах YAG:Ho самая длинноволновая генерация излучения соответствует 2,12 мкм. [K.Scholle, S.Lamirini, P.Koopman and Peter Fuhrberg. Frontiers in Guided Wave Optics and Optoelectronics. P.674. 2010. INTECH. Crotia.]. Также известен волоконный лазер, генерирующий излучение на длине волны 2,21 мкм [С.О.Антипов, В.А.Камынин, О.И.Медведков, А.В.Маракулин, А.А.Минашин, А.С.Курков, А.В.Баранников. Квантовая электроника. 2013. Т.43. №7. С.603-604].
Однако следует заметить, что недостатками волоконных лазеров по отношению к твердотельным лазерам являются возможность возникновения в волокне оптических нелинейных эффектов из-за высокой плотности излучения и сравнительно небольшая выходная энергия в импульсе, обусловленная малым объемом активного вещества.
Поэтому, наряду с созданием волоконных лазеров, генерирующих излучение в области длин волн 2,1-2,2 мкм, актуальной и важной для практических применений является задача поиска лазерных материалов для твердотельных лазеров, генерирующих излучение в данном спектральном диапазоне.
Известен оптический квантовый генератор, генерирующий излучение на длине волны 2,1 мкм, содержащий резонатор с активной средой и источник оптической накачки, при этом резонатор сформирован из, по крайней мере, двух зеркал. В качестве активной среды использован кристалл YAG:Ho или YLF:Ho, а в качестве источника оптической накачки использован лазерный диод с излучением на длине волны, выбираемой в диапазоне 1,9 мкм (US 5315608, US 07/916.467, опубл. 24.05.1994).
Недостатком известного решения является невозможность генерации лазерного излучения в спектральном диапазоне выше 2,15 мкм, так как в диапазоне длин волн выше 2,15 мкм интенсивность в спектре люминесценции, обусловленном переходом 5I7→5I8 ионов Hо3+ в кристаллах YAG:Ho или YLF:Ho, близка к 0.
Технический результат заключается в создании твердотельного лазера с длиной волны лазерной генерации 2,17 мкм.
Сущность изобретения заключается в том, что в двухмикронном твердотельном лазере, включающем резонатор с активной средой и источник оптической накачки, в качестве которой использован твердотельный лазер, при этом резонатор сформирован из двух зеркал, в качестве активной среды использован кристалл диоксида циркония, стабилизированный иттрием, активированный ионами Ho3+. В качестве источника оптической накачки использован лазер на кристалле YLiF4:Tm, генерирующий излучение на длине волны 1,905 мкм.
Технология получения кристаллов стабилизированного иттрием диоксида циркония, активированного редкоземельными ионами, в настоящее время в России отработана и позволяет получать кристаллы хорошего оптического качества.
На фиг.1 показана оптическая схема двухмикронного твердотельного лазера.
На фиг.2 - показан импульс лазерной генерации на переходе 5I7→5I8 ионов Ho3+ на кристаллах ZrO2 - 13,6 мол.% Y2O3 - 0,4 мол.% Ho2O3.
На фиг.3 - спектр лазерной генерации на переходе 5I7→5I8 ионов Ho3+ на кристаллах ZrO2 - 13,6 мол.% Y2O3 - 0,4 мол.% Ho2O3.
Оптическая схема двухмикронного твердотельного лазера (фиг.1) содержит резонатор, включающий входное зеркало 1 и выходное зеркало 2, активную среду 3, в качестве которой использован кристалл диоксида циркония, стабилизированный иттрием, активированный ионами Ho3+ (ZrO2 - 13,6 мол.% Y2O3 - 0,4 мол.% Ho2O3). В качестве источника накачки использован твердотельный лазер 4 на кристалле YLiF4:Tm с длиной волны излучения 1,905 мкм. Перед входным зеркалом 1 установлен обтюратор 5.
Лазер работает следующим образом. Накачка активного элемента осуществлялась на уровень 5I7 ионов Ho3+ твердотельным лазером на кристалле YLiF4:Tm 1 с длиной волны излучения 1,905 мкм. Для снижения тепловой нагрузки на активный элемент использовался обтюратор 5, формирующий импульсы накачки длительностью 30 мс с частотой повторения ~3 Гц.
Активная среда 3 в виде элемента размером 3×3×20 мм, вырезанного из кристалла 13,6 мол.% Y2O3 - 0,4 мол.% Ho2O3, на торцы которого нанесено просветляющее покрытие на длину волны генерации (λген~2,15 мкм). Излучение лазера накачки фокусировалось в активном элементе с помощью линзы 6. Диаметр перетяжки составлял 300 мкм. В эксперименте использовался конфокальный резонатор, образованный плоским зеркалом 1, коэффициент пропускания в области накачки ≥60%, коэффициент отражения на длине волны генерации более 99%, и сферическим выходным зеркалом 6 с коэффициентом пропускания на длине волны генерации менее 1% с радиусом кривизны рабочей поверхности 100 мм. Система термостабилизации обеспечивала поддержание температуры медной оправки активного элемента ~18°C. Осциллограммы импульса лазерной генерации на кристалле ZrO2 - 13,6 мол.% Y2O3 - 0,4 мол.% Ho2O3 и импульса возбуждения, полученные с помощью цифрового осциллографа GDS 720C, представлены на фиг.2. Лазерная генерация на переходе 5I7→5I8 ионов Ho3+ в кристаллах ZrO2 - 13,6 мол.% Y2O3 - 0,4 мол.% Ho2O3 была получена на длине волны 2,17 мкм. Порог генерации составил 380 мВт по поглощенной мощности накачки.
Спектр лазерной генерации на кристалле ZrO2 - 13,6 мол.% Y2O3 - 0,4 мол.% Ho2O3 показан на фиг.3.
По сравнению с известными решениями предлагаемое изобретение позволяет создавать твердотельные лазеры с длиной волны генерации 2,17 мкм.
название | год | авторы | номер документа |
---|---|---|---|
ЛАЗЕРНОЕ ВЕЩЕСТВО | 1996 |
|
RU2095900C1 |
ОПТИЧЕСКИЙ КВАНТОВЫЙ ГЕНЕРАТОР ДВУХМИКРОННОГО ДИАПАЗОНА ДЛИН ВОЛН | 2011 |
|
RU2459328C1 |
ЛАЗЕРНАЯ СИСТЕМА И СПОСОБ ГЕНЕРАЦИИ ИК ИЗЛУЧЕНИЯ | 2018 |
|
RU2693542C1 |
ХИРУРГИЧЕСКАЯ ЛАЗЕРНАЯ СИСТЕМА | 2018 |
|
RU2694126C1 |
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 1992 |
|
RU2034384C1 |
СПОСОБ ГЕНЕРАЦИИ КОЛЕБАНИЙ ГИПЕРЗВУКОВЫХ ЧАСТОТ | 1996 |
|
RU2110336C1 |
ПЕРЕСТРАИВАЕМЫЙ ЛАЗЕР | 1991 |
|
RU2023333C1 |
СПОСОБ ВИЗУАЛИЗАЦИИ ДВУХМИКРОННОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ВИДИМЫЙ СВЕТ | 2013 |
|
RU2549561C1 |
УСТРОЙСТВО ДЛЯ ЛАЗЕРНОЙ АБЛЯЦИИ МАТЕРИАЛОВ (ВАРИАНТЫ) | 1997 |
|
RU2176840C2 |
ИНФРАКРАСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 2015 |
|
RU2593819C1 |
Изобретение относится к лазерной технике. Двухмикронный твердотельный лазер содержит резонатор с активной средой и источник оптической накачки, в качестве которой использован твердотельный лазер. Резонатор сформирован из двух зеркал, в качестве активной среды использован кристалл диоксида циркония, стабилизированный иттрием, активированный ионами Ho3+. Технический результат заключается в обеспечении возможности лазерной генерации на длине волны 2,17 мкм. 1 з.п. ф-лы, 3 ил.
1. Двухмикронный твердотельный лазер, включающий резонатор с активной средой и источник оптической накачки, в качестве которой использован твердотельный лазер, при этом резонатор сформирован из двух зеркал, отличающийся тем, что в качестве активной среды использован кристалл диоксида циркония, стабилизированный иттрием, активированный ионами Но3+.
2. Двухмикронный твердотельный лазер по п.1, отличающийся тем, что в качестве источника оптической накачки использован лазер на кристалле YLiF4:Tm, генерирующий излучение на длине волны 1,905 мкм.
US 5315608 A, 24.05.1994 | |||
П.А | |||
Рябочкина и др | |||
"СТРУКТУРА И СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА КРИСТАЛЛОВ СТАБИЛИЗИРОВАННОГО ИТТРИЕМ ДИОКСИДА ЦИРКОНИЯ, АКТИВИРОВАННЫХ ИОНАМИ Tm3+", ОПТИКА И СПЕКТРОСКОПИЯ, СПб, НАУКА, том 112, N4, подписано к печати 15.03.2012, стр.647 - 654 | |||
WO 2011082031 A1, 07.07.2011, | |||
WO 9637023 A1, 21.11.1996 | |||
МИКРОЛАЗЕР (ВАРИАНТЫ) | 2000 |
|
RU2182739C2 |
Авторы
Даты
2015-02-20—Публикация
2013-09-02—Подача