КОМПРЕССОРНАЯ СТАНЦИЯ ДЛЯ ПЕРЕКАЧКИ ГАЗА (ВАРИАНТЫ) Российский патент 2015 года по МПК F04D27/00 

Описание патента на изобретение RU2543710C1

Изобретение относится к области перекачки газа компрессорными станциями и может быть использовано в цехах компрессорных станций при транспортировке газа через магистральные газопроводы.

Известна компрессорная станция для перекачки газа, содержащая газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, аппараты воздушного охлаждения газа, расположенные за нагнетательным патрубком технологического компрессора [Алимов С.В., Маланичев В.А., Мигачева Л.А. Повышение пропускной способности магистральных газопроводов // «Деловая слава России» вып. VI 2008 - I 2009. - С.90-91.].

Недостатком известного технического решения являются значительные затраты энергии на сжатие газа, связанные с высоким уровнем температуры газа на входе в технологический компрессор, хотя охлаждение газа в аппаратах воздушного охлаждения после его сжатия и позволяет увеличить пропускную способность газопровода.

Известно техническое решение, направленное на снижение затрат энергии на сжатие воздуха в осевом компрессоре газотурбинной установки. Повышение эффективности газотурбинной установки достигается охлаждением поступающего в осевой компрессор атмосферного воздуха с помощью абсорбционных холодильных установок, использующих теплоту выхлопных газов газотурбинной установки [Кузьмина Т.Г., Тесля Е.С. О повышении мощности и кпд ГТД в теплое время года за счет охлаждения циклового воздуха // Газотурбинные технологии. - 2008, №1. - С.16-18.].

Недостатком данного технического решения является то, что абсорбционные холодильные установки имеют значительные массу и габариты. Кроме этого, в контуре абсорбционной холодильной установки должна быть предусмотрена градирня, для работы которой требуется обеспечить циркуляцию воды.

Указанные недостатки частично устранены в компрессорной станции, содержащей газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, включающая в себя осевой компрессор, на входном тракте которого установлено воздухоочистительное устройство, содержащее, по крайней мере, циклонные элементы с зонами входа атмосферного воздуха, пылесборник, коллектор отвода чистого воздуха, охладитель газа, установленный на входе технологического компрессора и выполненный в виде части теплоиспользующей холодильной машины, включающей в себя компрессор, входной патрубок которого подключен к выходному патрубку полости холодильного агента охладителя газа [Патент РФ №2418 991, МПК F04D 27/00, опубл. 20.05.2011.]. Благодаря охлаждению газа до сжатия в технологическом компрессоре значительно снижаются затраты энергии на сжатие газа, повышается эффективность работы компрессорной станции.

Данное техническое решение является наиболее близким к предлагаемому по совокупности признаков и принято за прототип.

Однако вырабатываемый в теплоиспользующей холодильной машине холод используется недостаточно эффективно.

Задачей предлагаемого изобретения является повышение эффективности работы компрессорной станции путем снижения затрат энергии на сжатие поступающего в осевой компрессор газотурбинной установки атмосферного воздуха за счет его охлаждения холодом, вырабатываемым в теплоиспользующей холодильной машине.

Для достижения этого технического результата компрессорная станция по ее первому варианту, содержащая газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, включающая в себя осевой компрессор, на входном тракте которого установлено воздухоочистительное устройство, содержащее, по крайней мере, коллектор отвода чистого воздуха, охладитель газа, установленный на входе технологического компрессора и выполненный в виде части теплоиспользующей холодильной машины, включающей в себя компрессор, входной патрубок которого подключен к выходному патрубку полости холодильного агента охладителя газа, согласно изобретению снабжена размещенным между воздухоочистительным устройством и входным трактом осевого компрессора газотурбинной установки теплообменным аппаратом, входной и выходной патрубки полости холодного теплоносителя которого подключены соответственно к выходному патрубку полости холодильного агента охладителя газа и входному патрубку компрессора теплоиспользующей холодильной машины, а входной и выходной патрубки полости горячего теплоносителя теплообменного аппарата подключены соответственно к коллектору отвода чистого воздуха воздухоочистительного устройства и входному тракту осевого компрессора газотурбинной установки.

Для достижения технического результата в компрессорной станции для перекачки газа по ее второму варианту, содержащей газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, включающая в себя осевой компрессор, на входном тракте которого установлено воздухоочистительное устройство, содержащее, по крайней мере, циклонные элементы с зонами входа атмосферного воздуха, пылесборник, коллектор отвода чистого воздуха, охладитель газа, установленный на входе технологического компрессора и выполненный в виде части теплоиспользующей холодильной машины, включающей в себя компрессор, входной патрубок которого подключен к выходному патрубку полости холодильного агента охладителя газа, согласно изобретению воздухоочистительное устройство выполнено с расположенной между зонами входа атмосферного воздуха циклонных элементов и пылесборником камерой, ограниченной стенками, днищем и крышкой, с входным и выходным патрубками, размещенными на стенках в противоположных концах в нижней и верхней частях камеры и подключенными соответственно к выходному патрубку полости холодильного агента охладителя газа и к входному патрубку компрессора теплоиспользующей холодильной машины, при этом на днище и крышке камеры выполнены гнезда с посадочными поверхностями, в которые установлены циклонные элементы, камера герметизирована от окружающей среды уплотнительными элементами, размещенными между посадочными поверхностями гнезд и наружными поверхностями циклонных элементов.

Новым является то, что посадочные поверхности гнезд на днище и крышке выполнены соосно.

Кроме того, входной и выходной патрубки камеры разделены друг от друга перегородкой с цилиндрическими втулками, охватывающими наружные поверхности циклонных элементов с кольцевыми зазорами. Новым является также то, что циклонные элементы выполнены из материала с высокой теплопроводностью.

Благодаря введению новых признаков обеспечивается постоянная циркуляция холодильного агента, выходящего из охладителя газа, через полость холодного теплоносителя теплообменного аппарата (камеру воздухоочистительного устройства), что позволяет снизить температуру воздуха, поступающего через воздухоочистительное устройство и полость горячего теплоносителя теплообменного аппарата (циклонные элементы воздухоочистительного устройства) в осевой компрессор, уменьшить затраты энергии на сжатие воздуха в осевом компрессоре газотурбинной установки, повысить эффективность работы компрессорной станции для перекачки газа.

Сущность изобретения поясняется чертежами, представленными на фиг.1, 2, 3.

На фиг.1 показана функциональная схема компрессорной станции по первому варианту.

На фиг.2 показана функциональная схема компрессорной станции по второму варианту.

На фиг.3 показана схема воздухоочистительного устройства.

Компрессорная станция по первому варианту содержит (фиг.1) соединенные последовательно входной коллектор магистрального газопровода 1, блок очистки газа 2, входную запорную арматуру 3, охладитель газа 4, технологический компрессор 5, механически связанный с его приводом 6, в качестве которого используется газотурбинная установка, выходную запорную арматуру 7, выходной коллектор 8 магистрального газопровода. Основными элементами газотурбинной установки являются осевой компрессор 9, механически связанный с турбиной высокого давления 10, силовая турбина 11, механически связанная с технологическим компрессором 5, камера сгорания 12. Входной тракт газотурбинной установки, связанный с входом осевого компрессора 9, содержит приемник воздуха 13, воздухоочистительное устройство 14, теплообменный аппарат 15 и соединительные трубы. Выходной тракт газотурбинной установки, связанный с выходом силовой турбины 11, содержит утилизатор тепла 16, выполненный в виде котла. Охладитель газа 4 и утилизатор тепла 16 являются также элементами теплоиспользующей турбохолодильной машины 17, которая содержит дополнительно турбину 18, механически связанную с турбокомпрессором 19, конденсатор 20, регулятор потока 21, насос 22, дроссель-регулятор 23.

Компрессорная станция по второму варианту (фиг.2) аналогична первому варианту. Отличие заключается лишь в том, что теплообменный аппарат совмещен с воздухоочистительным устройством 14. Воздухоочистительное устройство включает в себя (фиг.3) циклонные элементы 24 с зонами входа атмосферного воздуха 25, коллектор отвода чистого воздуха 26, пылесборник 27, камеру 28 с входным 29 и выходным 30 патрубками, расположенными на стенках 31, 32 в нижней и верхней частях камеры и разделенными друг от друга перегородкой 33 с цилиндрическими втулками 34, охватывающими наружные поверхности циклонных элементов 24 с кольцевыми зазорами. На крышке 35 и днище 36 камеры выполнены гнезда 37, 38 с соосными посадочными поверхностями, в которые установлены циклонные элементы 24. Между наружными поверхностями циклонных элементов и посадочными поверхностями гнезд размещены уплотнительные элементы 39, обеспечивающие герметизацию камеры 28 относительно окружающей среды. В местах входа циклонных элементов в пылесборник 27 и коллектор отвода чистого воздуха 26 также организованы посадочные поверхности 40, 41. Для повышения эффективности охлаждения воздуха циклонные элементы могут быть выполнены из материала с высокой теплопроводностью.

Компрессорная станция по первому варианту (фиг.1) работает следующим образом.

Газ из входного коллектора магистрального газопровода 1 поступает в блок очистки 2, где очищается от конденсата и механических примесей, далее проходит через входную запорную арматуру 3 и охлаждается в охладителе газа 4 до заданной температуры. Охлажденный газ поступает в технологический компрессор 5, где сжимается до заданного давления, проходит через выходную запорную арматуру 7 и поступает в выходной коллектор 8 магистрального газопровода для дальнейшей транспортировки.

Привод технологического компрессора 5 осуществляется от газотурбинной установки 6. Воздух из атмосферы через приемник воздуха 13, воздухоочистительное устройство 14, теплообменный аппарат 15 поступает в осевой компрессор 9, который сжимает его до необходимого давления и подает в камеру сгорания 12. В камере сгорания 12 воздуху подводится теплота за счет сгорания топливного газа и температура продуктов сгорания резко возрастает. Далее продукты сгорания расширяются в турбине высокого давления 10, силовой турбине 11, отдавая механическую энергию. Турбина 10 отдает свою энергию осевому компрессору 9, а силовая турбина 11 - технологическому компрессору 5, приводя его ротор во вращение. Расширившиеся продукты сгорания - выхлопные газы с достаточно высокой температурой проходят через утилизатор тепла 16, установленный в выходном тракте газотурбинной установки и отдают теплоту холодильному агенту теплоиспользующей турбохолодильной машины.

Турбохолодильная машина, применяемая для выработки холода, который используется для охлаждения газа в охладителе газа 4 и охлаждения воздуха в теплообменном аппарате 15, работает следующим образом. Холодильный агент под давлением кипит в утилизаторе тепла 16. Пары холодильного агента на выходе из утилизатора тепла 16 перегреваются до температуры, зависящей от температурного уровня, выхлопных газов, т.е. утилизируемого тепла. Пары холодильного агента из утилизатора тепла 16 поступают в турбину 18, где, расширяясь, совершают работу и после нее попадают в конденсатор 20. Пары холодильного агента из охладителя газа 4, который является одновременно испарителем турбохолодильной машины, проходят через теплообменный аппарат 15, всасываются турбокомпрессором 19 и после сжатия в нем также поступают в конденсатор 20. Необходимую для сжатия паров холодильного агента механическую энергию турбокомпрессор 19 получает от турбины 18. Жидкий холодильный агент после выхода из конденсатора 20 в регуляторе потока 21 разветвляется на два потока: первый направляется через дроссель-регулятор 23 для питания охладителя газа (испарителя) 4 и теплообменного аппарата 15, а второй подается с помощью насоса 22 в утилизатор тепла 16.

Компрессорная станция по второму варианту (фиг.2) работает аналогично первому варианту. Отличие заключается в том, что холодильный агент после охладителя газа 4 (фиг.2) через входной патрубок 29 (фиг.3) поступает в камеру 28 воздухоочистительного устройства, проходит через кольцевые зазоры между цилиндрическими втулками 34 перегородки 33 и наружными поверхностями циклонных элементов 24 и через выходной патрубок 30 подается во всасывающий патрубок компрессора 19 (фиг.2) теплоиспользующей холодильной машины. Воздух из атмосферы через зоны входа 25 поступает в циклонные элементы 24, охлаждается холодильным агентом, омывающим наружные поверхности циклонных элементов в зоне расположения цилиндрических втулок 34, очищается от механических примесей, конденсата и через коллектор отвода чистого воздуха 26 поступает во входной тракт осевого компрессора газотурбинной установки.

Таким образом, использование холода, выработанного при утилизации теплоты выхлопных газов газотурбинной установки с помощью теплоиспользующей холодильной машины для охлаждения перекачиваемого газа и воздуха до их сжатия в технологическом компрессоре и осевом компрессоре газотурбинной установки соответственно, позволит снизить затраты энергии на их сжатие, повысить эффективность работы компрессорной станции в целом.

Похожие патенты RU2543710C1

название год авторы номер документа
СПОСОБ ПЕРЕКАЧКИ ГАЗА (ВАРИАНТЫ) И КОМПРЕССОРНАЯ СТАНЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2009
  • Кантюков Рафкат Абдулхаевич
  • Закиров Раис Шакирович
  • Тамеев Ильгиз Минигалеевич
  • Хадиев Муллагали Бариевич
  • Максимов Валерий Архипович
  • Шайхиев Фарит Габдулхакович
RU2418991C1
ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ И СПОСОБ ЕГО ЗАПУСКА 2014
  • Кантюков Рафаэль Рафкатович
  • Сорвачёв Александр Владимирович
RU2607113C2
Газоперекачивающий агрегат 2017
  • Мнушкин Игорь Анатольевич
RU2685802C1
ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ 2009
  • Пыхтеев Виктор Григорьевич
  • Федоренко Николай Дмитриевич
  • Оболенский Олег Константинович
  • Ткачуков Лев Владимирович
  • Сказыткин Константин Анатольевич
RU2403416C1
СПОСОБ ПЕРЕКАЧКИ ГАЗА (ВАРИАНТЫ) И КОМПРЕССОРНАЯ СТАНЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2012
  • Корнеев Сергей Иванович
  • Шурухин Игорь Николаевич
  • Шабанов Константин Юрьевич
  • Позднякова Мария Николаевна
RU2484360C1
Комплексное воздухоочистительное устройство в составе газоперекачивающего агрегата 2021
  • Сизиков Павел Викторович
  • Антонов Андрей Александрович
RU2758874C1
Устройство для охлаждения циклового воздуха газотурбинной установки 2022
  • Руфанова Инна Михайловна
  • Леонтьев Евгений Андреевич
  • Жуков Алексей Евгеньевич
RU2798262C1
ПРОТИВООБЛЕДЕНИТЕЛЬНАЯ СИСТЕМА ГАЗОПЕРЕКАЧИВАЮЩЕГО АГРЕГАТА С ГАЗОТУРБИННЫМ ПРИВОДОМ 2014
  • Вагнер Виктор Владиславович
  • Карнаухов Михаил Юрьевич
  • Курилов Виктор Егорович
  • Машков Алексей Александрович
  • Редикульцев Сергей Александрович
RU2573437C1
СПОСОБ ЭКСПЛУАТАЦИИ КОМПРЕССОРНОГО ЦЕХА С ГАЗОТУРБИННЫМ ПРИВОДОМ РЕГЕНЕРАТИВНОГО ЦИКЛА И КОМПРЕССОРНЫЙ ЦЕХ С ГАЗОТУРБИННЫМ ПРИВОДОМ РЕГЕНЕРАТИВНОГО ЦИКЛА 2004
  • Фрейман В.Б.
  • Фрейман К.В.
  • Сапелкин В.С.
RU2245461C1
ЛИНЕЙНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ 2004
  • Селиванов Николай Павлович
RU2279011C2

Иллюстрации к изобретению RU 2 543 710 C1

Реферат патента 2015 года КОМПРЕССОРНАЯ СТАНЦИЯ ДЛЯ ПЕРЕКАЧКИ ГАЗА (ВАРИАНТЫ)

Изобретение относится к области перекачки газа и может быть использовано на компрессорных станциях при транспортировке газа через магистральные трубопроводы. Компрессорная станция для перекачки газа содержит газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, включающая в себя осевой компрессор. На входе в технологический компрессор установлен охладитель газа. На входном тракте осевого компрессора газотурбинной установки установлен теплообменный аппарат, входной и выходной патрубки полости холодного теплоносителя которого соединены с выходным патрубком полости холодильного агента охладителя газа и входным патрубком компрессора теплоиспользующей холодильной машины, частью которой является охладитель газа. Изобретение направлено на снижение затрат энергии при сжатии газа в технологическом компрессоре и воздуха в осевом компрессоре газотурбинной установки, повышение эффективности работы компрессорной станции. 2 н. и 3 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 543 710 C1

1. Компрессорная станция для перекачки газа, содержащая газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, включающая в себя осевой компрессор, на входном тракте которого установлено воздухоочистительное устройство, содержащее, по крайней мере, коллектор отвода чистого воздуха, охладитель газа, установленный на входе технологического компрессора и выполненный в виде части теплоиспользующей холодильной машины, включающей в себя компрессор, входной патрубок которого подключен к выходному патрубку полости холодильного агента охладителя газа, отличающаяся тем, что снабжена размещенным между воздухоочистительным устройством и входным трактом осевого компрессора газотурбинной установки теплообменным аппаратом, входной и выходной патрубки полости холодного теплоносителя которого подключены соответственно к выходному патрубку полости холодильного агента охладителя газа и входному патрубку компрессора теплоиспользующей холодильной машины, а входной и выходной патрубки полости горячего теплоносителя теплообменного аппарата подключены соответственно к коллектору отвода чистого воздуха воздухоочистительного устройства и входному тракту осевого компрессора газотурбинной установки.

2. Компрессорная станция для перекачки газа, содержащая газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, включающая в себя осевой компрессор, на входном тракте которого установлено воздухоочистительное устройство, содержащее, по крайней мере, циклонные элементы с зонами входа атмосферного воздуха, пылесборник, коллектор отвода чистого воздуха, охладитель газа, установленный на входе технологического компрессора и выполненный в виде части теплоиспользующей холодильной машины, включающей в себя компрессор, входной патрубок которого подключен к выходному патрубку полости холодильного агента охладителя газа, отличающаяся тем, что воздухоочистительное устройство выполнено с расположенной между зонами входа атмосферного воздуха циклонных элементов и пылесборником камерой, ограниченной стенками, днищем и крышкой, с входным и выходным патрубками, размещенными на стенках в противоположных концах в нижней и верхней частях камеры и подключенными соответственно к выходному патрубку полости холодильного агента охладителя газа и к входному патрубку компрессора теплоиспользующей холодильной машины, при этом на днище и крышке камеры выполнены гнезда с посадочными поверхностями, в которые установлены циклонные элементы, камера герметизирована от окружающей среды уплотнительными элементами, размещенными между посадочными поверхностями гнезд и наружными поверхностями циклонных элементов.

3. Компрессорная станция по п.2, отличающаяся тем, что посадочные поверхности гнезд на днище и крышке выполнены соосными.

4. Компрессорная станция по п.2, отличающаяся тем, что входной и выходной патрубки камеры разделены друг от друга перегородкой с цилиндрическими втулками, охватывающими наружные поверхности циклонных элементов с кольцевыми зазорами.

5. Компрессорная станция по п.2, отличающаяся тем, что циклонные элементы выполнены из материала с высокой теплопроводностью.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543710C1

СПОСОБ ПЕРЕКАЧКИ ГАЗА (ВАРИАНТЫ) И КОМПРЕССОРНАЯ СТАНЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2009
  • Кантюков Рафкат Абдулхаевич
  • Закиров Раис Шакирович
  • Тамеев Ильгиз Минигалеевич
  • Хадиев Муллагали Бариевич
  • Максимов Валерий Архипович
  • Шайхиев Фарит Габдулхакович
RU2418991C1
Компрессорная станция магистрального газопровода 1988
  • Нищета Анатолий Алексеевич
SU1681138A1
КОМПРЕССОРНАЯ УСТАНОВКА 2009
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Свиридов Виктор Васильевич
  • Баянкина Елена Геннадьевна
RU2396469C1
US 0005403150 A1, 04.04.1995

RU 2 543 710 C1

Авторы

Кантюков Рафкат Абдулхаевич

Кантюков Рафаэль Рафкатович

Хадиев Муллагали Бариевич

Тахавиев Марат Сафаутдинович

Тамеев Ильгиз Минигалеевич

Хамидуллин Ильдар Вагизович

Сагбиев Илгизар Раффакович

Даты

2015-03-10Публикация

2014-01-09Подача